
Journal of Artificial Intelligence Research 43 (2012) 661-704 Submitted 09/11; published 04/12

Learning to Win by Reading Manuals
in a Monte-Carlo Framework

S.R.K. Branavan branavan@csail.mit.edu
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

David Silver d.silver@cs.ucl.ac.uk
Department of Computer Science
University College London

Regina Barzilay regina@csail.mit.edu

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Abstract

Domain knowledge is crucial for effective performance in autonomous control systems.
Typically, human effort is required to encode this knowledge into a control algorithm. In
this paper, we present an approach to language grounding which automatically interprets
text in the context of a complex control application, such as a game, and uses domain
knowledge extracted from the text to improve control performance. Both text analysis and
control strategies are learned jointly using only a feedback signal inherent to the application.
To effectively leverage textual information, our method automatically extracts the text
segment most relevant to the current game state, and labels it with a task-centric predicate
structure. This labeled text is then used to bias an action selection policy for the game,
guiding it towards promising regions of the action space. We encode our model for text
analysis and game playing in a multi-layer neural network, representing linguistic decisions
via latent variables in the hidden layers, and game action quality via the output layer.
Operating within the Monte-Carlo Search framework, we estimate model parameters using
feedback from simulated games. We apply our approach to the complex strategy game
Civilization II using the official game manual as the text guide. Our results show that a
linguistically-informed game-playing agent significantly outperforms its language-unaware
counterpart, yielding a 34% absolute improvement and winning over 65% of games when
playing against the built-in AI of Civilization.

1. Introduction

In this paper, we study the task of grounding document content in control applications
such as computer games. In these applications, an agent attempts to optimize a utility
function (e.g., game score) by learning to select situation-appropriate actions. In complex
domains, finding a winning strategy is challenging even for humans. Therefore, human
players typically rely on manuals and guides that describe promising tactics and provide
general advice about the underlying task. Surprisingly, such textual information has never
been utilized in control algorithms despite its potential to greatly improve performance.
Our goal, therefore, is to develop methods that can achieve this in an automatic fashion.

c©2012 AI Access Foundation. All rights reserved.

Branavan, Silver, & Barzilay

The natural resources available where a population settles affects its ability to produce food
and goods. Cities built on or near water sources can irrigate to increase their crop yields, and
cities near mineral resources can mine for raw materials. Build your city on a plains or grassland
square with a river running through it if possible.

Figure 1: An excerpt from the user manual of the game Civilization II.

We explore this question in the context of strategy games, a challenging class of large scale
adversarial planning problems.

Consider for instance the text shown in Figure 1. This is an excerpt from the user
manual of the game Civilization II.1 This text describes game locations where the action
build-city can be effectively applied. A stochastic player that does not have access to this
text would have to gain this knowledge the hard way: it would repeatedly attempt this
action in a myriad of states, thereby learning the characterization of promising state-action
pairs based on observed game outcomes. In games with large state spaces, long planning
horizons, and high-branching factors, this approach can be prohibitively slow and ineffective.
An algorithm with access to the text, however, could learn correlations between words in
the text and game attributes – e.g., the word “river” and places with rivers in the game –
thus leveraging strategies described in text to select better actions.

To improve the performance of control applications using domain knowledge automati-
cally extracted from text, we need to address the following challenges:

• Grounding Text in the State-Action Space of a Control Application Text
guides provide a wealth of information about effective control strategies, including
situation-specific advice as well as general background knowledge. To benefit from
this information, an algorithm has to learn the mapping between the text of the
guide, and the states and actions of the control application. This mapping allows
the algorithm to find state-specific advice by matching state attributes to their verbal
descriptions. Furthermore, once a relevant sentence is found, the mapping biases the
algorithm to select the action proposed in the guide document. While this mapping
can be modeled at the word-level, ideally we would also use information encoded in
the structure of the sentence – such as the predicate argument structure. For instance,
the algorithm can explicitly identify predicates and state attribute descriptions, and
map them directly to structures inherent in the control application.

• Annotation-free Parameter Estimation While the above text analysis tasks relate
to well-known methods in information extraction, prior work has primarily focused on
supervised methods. In our setup, text analysis is state dependent, therefore anno-
tations need to be representative of the entire state space. Given an enormous state
space that continually changes as the game progresses, collecting such annotations is
impractical. Instead, we propose to learn text analysis based on a feedback signal
inherent to the control application, e.g., the game score. This feedback is computed
automatically at each step of the game, thereby allowing the algorithm to continuously
adapt to the local, observed game context.

1. http://en.wikipedia.org/wiki/Civilization II

662

Learning to Win by Reading Manuals in a Monte-Carlo Framework

• Effective Integration of Extracted Text Information into the Control Ap-
plication Most text guides do not provide complete, step-by-step advice for all situ-
ations that a player may encounter. Even when such advice is available, the learned
mapping may be noisy, resulting in suboptimal choices. Therefore, we need to de-
sign a method which can achieve effective control in the absence of textual advice,
while robustly integrating automatically extracted information when available. We
address this challenge by incorporating language analysis into Monte-Carlo Search, a
state-of-the-art framework for playing complex games. Traditionally this framework
operates only over state and action features. By extending Monte-Carlo search to
include textual features, we integrate these two sources of information in a principled
fashion.

1.1 Summary of the Approach

We address the above challenges in a unified framework based on Markov Decision Processes
(MDP), a formulation commonly used for game playing algorithms. This setup consists of
a game in a stochastic environment, where the goal of the player is to maximize a given
utility function R(s) at state s. The player’s behavior is determined by an action-value
function Q(s, a) that assesses the goodness of action a at state s based on the attributes of
s and a.

To incorporate linguistic information into the MDP formulation, we expand the action
value function to include linguistic features. While state and action features are known
at each point of computation, relevant words and their semantic roles are not observed.
Therefore, we model text relevance as a hidden variable. Similarly, we use hidden variables
to discriminate the words that describe actions and those that describe state attributes from
the rest of the sentence. To incorporate these hidden variables in our action-value function,
we model Q(s, a) as a non-linear function approximation using a multi-layer neural network.

Despite the added complexity, all the parameters of our non-linear model can be effec-
tively learned in the Monte-Carlo Search framework. In Monte-Carlo Search, the action-
value function is estimated by playing multiple simulated games starting at the current
game state. We use the observed reward from these simulations to update the parameters
of our neural network via backpropagation. This focuses learning on the current game state,
allowing our method to learn language analysis and game-play appropriate to the observed
game context.

1.2 Evaluation

We test our method on the strategy game Civilization II, a notoriously challenging game
with an immense action space.2 As a source of knowledge for guiding our model, we use the
official game manual. As a baseline, we employ a similar Monte-Carlo search based player
which does not have access to textual information. We demonstrate that the linguistically-
informed player significantly outperforms the baseline in terms of the number of games
won. Moreover, we show that modeling the deeper linguistic structure of sentences fur-
ther improves performance. In full-length games, our algorithm yields a 34% improve-

2. Civilization II was #3 in IGN’s 2007 list of top video games of all time.
(http://top100.ign.com/2007/ign top game 3.html)

663

Branavan, Silver, & Barzilay

ment over a language unaware baseline and wins over 65% of games against the built-in,
hand-crafted AI of Civilization II. A video of our method playing the game is available at
http://groups.csail.mit.edu/rbg/code/civ/video. The code and data for this work, along
with a complete experimental setup and a preconfigured environment in a virtual machine
are available at http://groups.csail.mit.edu/rbg/code/civ.

1.3 Roadmap

In Section 2, we provide intuition about the benefits of integrating textual information into
learning algorithms for control. Section 3 describes prior work on language grounding, em-
phasizing the unique challenges and opportunities of our setup. This section also positions
our work in a large body of research on Monte-Carlo based players. Section 4 presents
background on Monte-Carlo Search as applied to game playing. In Section 5 we present a
multi-layer neural network formulation for the action-value function that combines infor-
mation from the text and the control application. Next, we present a Monte-Carlo method
for estimating the parameters of this non-linear function. Sections 6 and 7 focus on the ap-
plication of our algorithm to the game Civilization II. In Section 8 we compare our method
against a range of competitive game-playing baselines, and empirically analyze the proper-
ties of the algorithm. Finally, in Section 9 we discuss the implications of this research, and
conclude.

2. Learning Game Play from Text

In this section, we provide an intuitive explanation of how textual information can help im-
prove action selection in a complex game. For clarity, we first discuss the benefits of textual
information in the supervised scenario, thereby decoupling questions concerning modeling
and representation from those related to parameter estimation. Assume that every state s
is represented by a set of n features [s1, s2, . . . , sn]. Given a state s, our goal is to select the
best possible action aj from a fixed set A. We can model this task as multiclass classifica-
tion, where each choice aj is represented by a feature vector [(s1, aj), (s2, aj), . . . , (sn, aj)].
Here, (si, aj), i ∈ [1, n] represents a feature created by taking the Cartesian product be-
tween [s1, s2, . . . , sn] and aj . To learn this classifier effectively, we need a training set that
sufficiently covers the possible combinations of state features and actions. However, in do-
mains with complex state spaces and a large number of possible actions, many instances of
state-action feature values will be unobserved in training.

Now we show how the generalization power of the classifier can be improved using tex-
tual information. Assume that each training example, in addition to a state-action pair,
contains a sentence that may describe the action to be taken given the state attributes. In-
tuitively, we want to enrich our basic classifier with features that capture the correspondence
between states and actions, and words that describe them. Given a sentence w composed
of word types w1, w2, . . . , wm, these features can be of the form (si, wk) and (aj , wk) for
every i ∈ [1, n], k ∈ [1,m] and aj ∈ A. Assuming that an action is described using simi-
lar words throughout the guide, we expect that a text-enriched classifier would be able to
learn this correspondence via the features (aj , wk). A similar intuition holds for learning
the correspondence between state-attributes and their descriptions represented by features
(si, wk). Through these features, the classifier can connect state s and action aj based

664

Learning to Win by Reading Manuals in a Monte-Carlo Framework

on the evidence provided in the guiding sentence and their occurrences in other contexts
throughout the training data. A text-free classifier may not support such an association if
the action does not appear in a similar state context in a training set.

The benefits of textual information extend to models that are trained using control
feedback rather than supervised data. In this training scenario, the algorithm assesses the
goodness of a given state-action combination by simulating a limited number of game turns
after the action is taken and observing the control feedback provided by the underlying
application. The algorithm has a built-in mechanism (see Section 4) that employs the
observed feedback to learn feature weights, and intelligently samples the space in search for
promising state-action pairs. When the algorithm has access to a collection of sentences, a
similar feedback-based mechanism can be used to find sentences that match a given state-
action pair (Section 5.1). Through the state- and action-description features (si, wk) and
(aj , wk), the algorithm jointly learns to identify relevant sentences and to map actions and
states to their descriptions. Note that while we have used classification as the basis of
discussion in this section, in reality our methods will learn a regression function.

3. Related Work

In this section, we first discuss prior work in the field of grounded language acquisition.
Subsequently we look are two areas specific to our application domain – i.e., natural language
analysis in the context of games, and Monte-Carlo Search applied to game playing.

3.1 Grounded Language Acquisition

Our work fits into the broad area of research on grounded language acquisition where
the goal is to learn linguistic analysis from a non-linguistic situated context (Oates, 2001;
Barnard & Forsyth, 2001; Siskind, 2001; Roy & Pentland, 2002; Yu & Ballard, 2004; Chen
& Mooney, 2008; Zettlemoyer & Collins, 2009; Liang, Jordan, & Klein, 2009; Branavan,
Chen, Zettlemoyer, & Barzilay, 2009; Branavan, Zettlemoyer, & Barzilay, 2010; Vogel & Ju-
rafsky, 2010; Clarke, Goldwasser, Chang, & Roth, 2010; Tellex, Kollar, Dickerson, Walter,
Banerjee, Teller, & Roy, 2011; Chen & Mooney, 2011; Liang, Jordan, & Klein, 2011; Gold-
wasser, Reichart, Clarke, & Roth, 2011). The appeal of this formulation lies in reducing
the need for manual annotations, as the non-linguistic signals can provide a powerful, albeit
noisy, source of supervision for learning. In a traditional grounding setup it is assumed that
the non-linguistic signals are parallel in content to the input text, motivating a machine
translation view of the grounding task. An alternative approach models grounding in the
control framework where the learner actively acquires feedback from the non-linguistic envi-
ronment and uses it to drive language interpretation. Below we summarize both approaches,
emphasizing the similarity and differences with our work.

3.1.1 Learning Grounding from Parallel Data

In many applications, linguistic content is tightly linked to perceptual observations, provid-
ing a rich source of information for learning language grounding. Examples of such parallel
data include images with captions (Barnard & Forsyth, 2001), Robocup game events paired
with a text commentary (Chen & Mooney, 2008), and sequences of robot motor actions de-

665

Branavan, Silver, & Barzilay

scribed in natural language (Tellex et al., 2011). The large diversity in the properties of such
parallel data has resulted in the development of algorithms tailored for specific grounding
contexts, instead of an application-independent grounding approach. Nevertheless, existing
grounding approaches can be characterized along several dimensions that illuminate the
connection between these algorithms:

• Representation of Non-Linguistic Input The first step in grounding words in
perceptual data is to discretize the non-linguistic signal (e.g., an image) into a rep-
resentation that facilitates alignment. For instance, Barnard and Forsyth (2001) seg-
ment images into regions that are subsequently mapped to words. Other approaches
intertwine alignment and segmentation into a single step (Roy & Pentland, 2002), as
the two tasks are clearly interrelated. In our application, segmentation is not required
as the state-action representation is by nature discrete.

Many approaches move beyond discretization, aiming to induce rich hierarchical struc-
tures over the non-linguistic input (Fleischman & Roy, 2005; Chen & Mooney, 2008,
2011). For instance, Fleischman and Roy (2005) parse action sequences using a
context-free grammar which is subsequently mapped into semantic frames. Chen
and Mooney (2008) represent action sequences using first order logic. In contrast,
our algorithm capitalizes on the structure readily available in our data – state-action
transitions. While inducing a richer structure on the state-action space may bene-
fit mapping, it is a difficult problem in its own right from the field of hierarchical
planning (Barto & Mahadevan, 2003).

• Representation of Linguistic Input Early grounding approaches used the bag-
of-words approach to represent input documents (Yu & Ballard, 2004; Barnard &
Forsyth, 2001; Fleischman & Roy, 2005). More recent methods have relied on a richer
representation of linguistic data, such as syntactic trees (Chen & Mooney, 2008) and
semantic templates (Tellex et al., 2011). Our method incorporates linguistic informa-
tion at multiple levels, using a feature-based representation that encodes both words
as well as syntactic information extracted from dependency trees. As shown by our
results, richer linguistic representations can significantly improve model performance.

• Alignment Another common feature of existing grounding models is that the training
procedure crucially depends on how well words are aligned to non-linguistic structures.
For this reason, some models assume that alignment is provided as part of the training
data (Fleischman & Roy, 2005; Tellex et al., 2011). In other grounding algorithms, the
alignment is induced as part of the training procedure. Examples of such approaches
are the methods of Barnard and Forsyth (2001), and Liang et al. (2009). Both of these
models jointly generate the text and attributes of the grounding context, treating
alignment as an unobserved variable.

In contrast, we do not explicitly model alignment in our model due to the lack of
parallel data. Instead, we aim to extract relevant information from text and infuse it
into a control application.

666

Learning to Win by Reading Manuals in a Monte-Carlo Framework

3.1.2 Learning Grounding from Control Feedback

More recent work has moved away from the reliance on parallel corpora, using control feed-
back as the primary source of supervision. The assumption behind this setup is that when
textual information is used to drive a control application, the application’s performance will
correlate with the quality of language analysis. It is also assumed that the performance mea-
surement can be obtained automatically. This setup is conducive to reinforcement learning
approaches which can estimate model parameters from the feedback signal, even it is noisy
and delayed.

One line of prior work has focused on the task of mapping textual instructions into a
policy for the control application, assuming that text fully specifies all the actions to be exe-
cuted in the environment. For example, in our previous work (Branavan et al., 2009, 2010),
this approach was applied to the task of translating instructions from a computer manual
to executable GUI actions. Vogel and Jurafsky (2010) demonstrate that this grounding
framework can effectively map navigational directions to the corresponding path in a map.
A second line of prior work has focused on full semantic parsing – converting a given text
into a formal meaning representation such as first order logic (Clarke et al., 2010). These
methods have been applied to domains where the correctness of the output can be accu-
rately evaluated based on control feedback – for example, where the output is a database
query which when executed provides a clean, oracle feedback signal for learning. This line
of work also assumes that the text fully specifies the required output.

While our method is also driven by control feedback, our language interpretation task
itself is fundamentally different. We assume that the given text document provides high-
level advice without directly describing the correct actions for every potential game state.
Furthermore, the textual advice does not necessarily translate to a single strategy – in fact,
the text may describe several strategies, each contingent on specific game states. For this
reason, the strategy text cannot simply be interpreted directly into a policy. Therefore, our
goal is to bias a learned policy using information extracted from text. To this end, we do
not aim to achieve a complete semantic interpretation, but rather use a partial text analysis
to compute features relevant for the control application.

3.2 Language Analysis and Games

Even though games can provide a rich domain for situated text analysis, there have only
been a few prior attempts at leveraging this opportunity (Gorniak & Roy, 2005; Eisenstein,
Clarke, Goldwasser, & Roth, 2009).

Eisenstein et al. (2009) aim to automatically extract information from a collection of
documents to help identify the rules of a game. This information, represented as predi-
cate logic formulae, is estimated in an unsupervised fashion via a generative model. The
extracted formulae, along with observed traces of game play are subsequently fed to an In-
ductive Logic Program, which attempts to reconstruct the rules of the game. While at the
high-level, our goal is similar, i.e., to extract information from text useful for an external
task, there are several key differences. Firstly, while Eisenstein et al. (2009) analyze the
text and the game as two disjoint steps, we model both tasks in an integrated fashion. This
allows our model to learn a text analysis pertinent to game play, while at the same time
using text to guide game play. Secondly, our method learns both text analysis and game

667

Branavan, Silver, & Barzilay

play from a feedback signal inherent to the game, avoiding the need for pre-compiled game
traces. This enables our method to operate effectively in complex games where collecting a
sufficiently representative set of game traces can be impractical.

Gorniak and Roy (2005) develop a machine controlled game character which responds
to spoken natural language commands. Given traces of game actions manually annotated
with transcribed speech, their method learns a structured representation of the text and
aligned action sequences. This learned model is then used to interpret spoken instructions
by grounding them in the actions of a human player and the current game state. While the
method itself does not learn to play the game, it enables human control of an additional game
character via speech. In contrast to Gorniak and Roy (2005), we aim to develop algorithms
to fully and autonomously control all actions of one player in the game. Furthermore, our
method operates on the game’s user manual rather than on human provided, contextually
relevant instructions. This requires our model to identify if the text contains information
useful in the current game state, in addition to mapping the text to productive actions.
Finally, our method learns from game feedback collected via active interaction without
relying on manual annotations. This allows us to effectively operate on complex games
where collecting traditional labeled traces would be prohibitively expensive.

3.3 Monte-Carlo Search for Game AI

Monte-Carlo Search (MCS) is a state-of-the-art framework that has been very successfully
applied, in prior work, to playing complex games such as Go, Poker, Scrabble, and real-time
strategy games (Gelly, Wang, Munos, & Teytaud, 2006; Tesauro & Galperin, 1996; Billings,
Castillo, Schaeffer, & Szafron, 1999; Sheppard, 2002; Schäfer, 2008; Sturtevant, 2008; Balla
& Fern, 2009). This framework operates by playing simulated games to estimate the good-
ness or value of different candidate actions. When the game’s state and action spaces are
complex, the number of simulations needed for effective play become prohibitively large.
Previous application of MCS have addressed this issue using two orthogonal techniques: (1)
they leverage domain knowledge to either guide or prune action selection, (2) they estimate
the value of untried actions based on the observed outcomes of simulated games. This es-
timate is then used to bias action selection. Our MCS based algorithm for games relies on
both of the above techniques. Below we describe the differences between our application of
these techniques and prior work.

3.3.1 Leveraging Domain Knowledge

Domain knowledge has been shown to be critically important to achieving good perfor-
mance from MCS in complex games. In prior work this has been achieved by manually
encoding relevant domain knowledge into the game playing algorithm – for example, via
manually specified heuristics for action selection (Billings et al., 1999; Gelly et al., 2006),
hand crafted features (Tesauro & Galperin, 1996), and value functions encoding expert
knowledge (Sturtevant, 2008). In contrast to such approaches, our goal is to automati-
cally extract and use domain knowledge from relevant natural language documents, thus
bypassing the need for manual specification. Our method learns both text interpretation
and game action selection based on the outcomes of simulated games in MCS. This allows it
to identify and leverage textual domain knowledge relevant to the observed game context.

668

Learning to Win by Reading Manuals in a Monte-Carlo Framework

Action selection
according to
policy function

Stochastic state
transition according
to distribution

Figure 2: Markov Decision Process. Actions are selected according to policy function π(s, a)
given the current state s. The execution of the selected action ai (e.g., a1), causes
the MDP to transition to a new state s′ according to the stochastic state transition
distribution T (s′ | s, a).

3.3.2 Estimating the Value of Untried Actions

Previous approaches to estimating the value of untried actions have relied on two techniques.
The first, Upper Confidence bounds for Tree (UCT) is a heuristic used in concert with the
Monte-Carlo Tree Search variant of MCS. It augments an action’s value with an exploration
bonus for rarely visited state-action pairs, resulting in better action selection and better
overall game performance (Gelly et al., 2006; Sturtevant, 2008; Balla & Fern, 2009). The
second technique is to learn a linear function approximation of action values for the current
state s, based on game feedback (Tesauro & Galperin, 1996; Silver, Sutton, & Müller, 2008).
Even though our method follows the latter approach, we model action-value Q(s, a) via a
non-linear function approximation. Given the complexity of our application domain, this
non-linear approximation generalizes better than a linear one, and as shown by our results
significantly improves performance. More importantly, the non-linear model enables our
method to represent text analysis as latent variables, allowing it to use textual information
to estimate the value of untried actions.

4. Monte-Carlo Search

Our task is to leverage textual information to help us win a turn-based strategy game against
a given opponent. In this section, we first describe the Monte-Carlo Search framework
within which our method operates. The details of our linguistically informed Monte-Carlo
Search algorithm are given in Section 5.

4.1 Game Representation

Formally, we represent the given turn-based stochastic game as a Markov Decision Process
(MDP). This MDP is defined by the 4-tuple 〈S,A, T,R〉, where

• State space, S, is the set of all possible states. Each state s ∈ S represents a complete
configuration of the game in-between player turns.

• Action space, A, is the set of all possible actions. In a turn-based strategy game, a
player controls multiple game units at each turn. Thus, each action a ∈ A represents
the joint assignment of all unit actions executed by the current player during the turn.

669

Branavan, Silver, & Barzilay

• Transition distribution, T (s′ | s, a), is the probability that executing action a in state
s will result in state s′ at the next game turn. This distribution encodes the way the
game state changes due to both the game rules, and the opposing player’s actions.
For this reason, T (s′ | s, a) is stochastic – as shown in Figure 2, executing the same
action a at a given state s can result in different outcomes s′.

• Reward function, R(s) ∈ R, is the immediate reward received when transitioning to
state s. The value of the reward correlates with the goodness of actions executed up
to now, with higher reward indicating better actions.

All the above aspects of the MDP representation of the game – i.e., S, A, T () and R()
– are defined implicitly by the game rules. At each step of the game, the game-playing
agent can observe the current game state s, and has to select the best possible action a.
When the agent executes action a, the game state changes according to the state transition
distribution. While T (s′ | s, a) is not known a priori, state transitions can be sampled from
this distribution by invoking the game code as a black-box simulator – i.e., by playing the
game. After each action, the agent receives a reward according to the reward function R(s).
In a game playing setup, the value of this reward is an indication of the chances of winning
the game from state s. Crucially, the reward signal may be delayed – i.e., R(s) may have a
non-zero value only for game ending states such as a win, a loss, or a tie.

The game playing agent selects actions according to a stochastic policy π(s, a), which
specifies the probability of selecting action a in state s. The expected total reward after
executing action a in state s, and then following policy π is termed the action-value function
Qπ(s, a). Our goal is to find the optimal policy π∗(s, a) which maximizes the expected
total reward – i.e., maximizes the chances of winning the game. If the optimal action-value
function Qπ

∗
(s, a) is known, the optimal game-playing behavior would be to select the action

a with the highest Qπ
∗
(s, a). While it may be computationally hard to find an optimal policy

π∗(s, a) or Qπ
∗
(s, a), many well studied algorithms are available for estimating an effective

approximation (Sutton & Barto, 1998).

4.2 Monte-Carlo Framework for Computer Games

The Monte-Carlo Search algorithm, shown in Figure 3, is a simulation-based search paradigm
for dynamically estimating the action-values Qπ(s, a) for a given state st (see Algorithm 1
for pseudo code). This estimate is based on the rewards observed during multiple roll-outs,
each of which is a simulated game starting from state st.

3 Specifically, in each roll-out,
the algorithm starts at state st, and repeatedly selects and executes actions according to a
simulation policy π(s, a), sampling state transitions from T (s′ | s, a). On game completion
at time τ , the final reward R(sτ) is measured, and the action-value function is updated
accordingly.4 As in Monte-Carlo control (Sutton & Barto, 1998), the updated action-value

3. Monte-Carlo Search assumes that it is possible to play simulated games. These simulations may be
played against a heuristic AI player. In our experiments, the built-in AI of the game is used as the
opponent.

4. In general, roll-outs are run until game completion. If simulations are expensive, as is the case in our
domain, roll-outs can be truncated after a fixed number of steps. This however depends on the availability
of an approximate reward signal at the truncation point. In our experiments, we use the built-in score
of the game as the reward. This reward is noisy, but available at every stage of the game.

670

Learning to Win by Reading Manuals in a Monte-Carlo Framework

Game

Copy game
state to
simulator

Update rollout
policy from
game feedback
after each rollout

Apply action with
best simulation
outcome to game

Single
simulation
rollout

Simulation forSimulation for

Figure 3: Overview of Monte-Carlo Search algorithm. For each game state st, an indepen-
dent set of simulated games or roll-outs are done to find the best possible game
action at. Each roll-out starts at state st, with actions selected according to a
simulation policy π(s, a). This policy is learned from the roll-outs themselves –
with the roll-outs improving the policy, which in turn improves roll-out action se-
lection. The process is repeated for every actual game state, with the simulation
policy being relearned from scratch each time.

function Qπ(s, a) is used to define an improved simulation policy, thereby directing subse-
quent roll-outs towards higher scoring regions of the game state space. After a fixed number
of roll-outs have been performed, the action with the highest average final reward in the
simulations is selected and played in the actual game state st. This process is repeated
for each state encountered during the actual game, with the action-value function being
relearned from scratch for each new game state.5 The simulation policy usually selects
actions to maximize the action-value function. However, sometimes other valid actions are
also randomly explored in case they are more valuable than predicted by the current es-

5. While it is conceivable that sharing the action-value function across the roll-outs of different game states
would be beneficial, this was empirically not the case in our experiments. One possible reason is that
in our domain, the game dynamics change radically at many points during the game – e.g., when a
new technology becomes available. When such a change occurs, it may actually be detrimental to play
according to the action-value function from the previous game step. Note however, that the action-value
function is indeed shared across the roll-outs for a single game state st, with parameters updated by
successive roll-outs. This is how the learned model helps improve roll-out action selection, and thereby
improves game play. The setup of relearning from scratch for each game state has been shown to be
beneficial even in stationary environments (Sutton, Koop, & Silver, 2007).

671

Branavan, Silver, & Barzilay

timate of Qπ(s, a). As the accuracy of Qπ(s, a) improves, the quality of action selection
improves and vice versa, in a cycle of continual improvement (Sutton & Barto, 1998).

The success of Monte-Carlo Search depends on its ability to make a fast, local estimate
of the action-value function from roll-outs collected via simulated play. However in games
with large branching factors, it may not be feasible to collect sufficient roll-outs, especially
when game simulation is computationally expensive. Thus it is crucial that the learned
action-value function generalizes well from a small number of roll-outs – i.e., observed
states, actions and rewards. One way to achieve this is to model the action-value function
as a linear combination of state and action attributes:

Qπ(s, a) = ~w · ~f(s, a).

Here ~f(s, a) ∈ Rn is a real-valued feature function, and ~w is a weight vector. Prior work has
shown such linear value function approximations to be effective in the Monte-Carlo Search
framework (Silver et al., 2008).

Note that learning the action-value function Q(s, a) in Monte-Carlo Search is related
to Reinforcement Learning (RL) (Sutton & Barto, 1998). In fact, in our approach, we use
standard gradient descent updates from RL to estimate the parameters of Q(s, a). There is,
however, one crucial difference between these two techniques: In general, the goal in RL is
to find a Q(s, a) applicable to any state the agent may observe during its existence. In the
Monte-Carlo Search framework, the aim is to learn a Q(s, a) specialized to the current state
s. In essence, Q(s, a) is relearned for every observed state in the actual game, using the
states, actions and feedback from simulations. While such relearning may seem suboptimal,
it has two distinct advantages: first, since Q(s, a) only needs to model the current state, it
can be representationally much simpler than a global action-value function. Second, due to
this simpler representation, it can be learned from fewer observations than a global action-
value function (Sutton et al., 2007). Both of these properties are important when the state
space is extremely large, as is the case in our domain.

5. Adding Linguistic Knowledge to the Monte-Carlo Framework

The goal of our work is to improve the performance of the Monte-Carlo Search framework
described above, using information automatically extracted from text. In this section, we
describe how we achieve this in terms of model structure and parameter estimation.

5.1 Model Structure

To achieve our aim of leveraging textual information to improve game-play, our method
needs to perform three tasks: (1) identify sentences relevant to the current game state, (2)
label sentences with a predicate structure, and (3) predict good game actions by combining
game features with text features extracted via the language analysis steps. We first describe
how each of these tasks can be modeled separately before showing how we integrate them
into a single coherent model.

672

Learning to Win by Reading Manuals in a Monte-Carlo Framework

procedure PlayGame ()

Initialize game state to fixed starting state
s1 ← s0

for t = 1 . . . T do

Run N simulated games

for i = 1 . . . N do

(ai, ri) ← SimulateGame (st)

end

Compute average observed utility for each action

at ← arg max
a

1

Na

∑
i:ai=a

ri

Execute selected action in game

st+1 ← T (s′ | st, at)
end

procedure SimulateGame (st)

for u = t . . . τ do

Compute Q function approximation

Qπ(su, a) = ~w · ~f(su, a)

Sample action from action-value function in ε-greedy fashion:

au ∼ π(su, a) =

 uniform (a ∈ A) with probability ε

arg max
a

Qπ(su, a) otherwise

Execute selected action in game:

su+1 ← T (s′ | su, au)

if game is won or lost
break

end

Update parameters ~w of Qπ(st, a)

Return action and observed utility:

return at, R(sτ)

Algorithm 1: The general Monte-Carlo algorithm.

673

Branavan, Silver, & Barzilay

5.1.1 Modeling Sentence Relevance

As discussed in Section 1, only a small fraction of a strategy document is likely to provide
guidance relevant to the current game context. Therefore, to effectively use information
from a given document d, we first need to identify the sentence yi that is most relevant to
the current game state s and action a.6 We model this decision as a log-linear distribution,
defining the probability of yi being the relevant sentence as:

p(y = yi|s, a, d) ∝ e~u·
~φ(yi,s,a,d). (1)

Here ~φ(yi, s, a, d) ∈ Rn is a feature function, and ~u are the parameters we need to estimate.
The function ~φ(·) encodes features that combine the attributes of sentence yi with the
attributes of the game state and action. These features allow the model to learn correlations
between game attributes and the attributes of relevant sentences.

5.1.2 Modeling Predicate Structure

When using text to guide action selection, in addition to using word-level correspondences,
we would also like to leverage information encoded in the structure of the sentence. For
example, verbs in a sentence might be more likely to describe suggested game actions.
We aim to access this information by inducing a task-centric predicate structure on the
sentences. That is, we label the words of a sentence as either action-description, state-
description or background. Given sentence y and its precomputed dependency parse q, we
model the word-by-word labeling decision in a log-linear fashion – i.e., the distribution over
the predicate labeling z of sentence y is given by:

p(z |y, q) = p(~e |y, q)
=

∏
j

p(ej |j, y, q), (2)

p(ej |j, y, q) ∝ e~v·
~ψ(ej ,j,y,q),

where ej is the predicate label of the jth word. The feature function ~ψ(ej , j, y, q) ∈ Rn,
in addition to encoding word type and part-of-speech tag, also includes dependency parse
information for each word. These features allow the predicate labeling decision to condition
on the syntactic structure of the sentence.

5.1.3 Modeling the Action-Value Function

Once the relevant sentence has been identified and labeled with a predicate structure, our
algorithm needs to use this information along with the attributes of the current game state s
to select the best possible game action a. To this end, we redefine the action-value function
Q(s, a) as a weighted linear combination of features of the game and the text information:

Q(s′, a′) = ~w · ~f(s, a, yi, zi). (3)

6. We use the approximation of selecting the single most relevant sentence as an alternative to combining
the features of all sentences in the text, weighted by their relevance probability p(y = yi|s, a, d). This
setup is computationally more expensive than the one used here.

674

Learning to Win by Reading Manuals in a Monte-Carlo Framework

Hidden layer encoding
sentence relevance

Output layer

Input layer: Deterministic feature

layer:

Hidden layer encoding
predicate labeling

Figure 4: The structure of our neural network model. Each rectangle represents a collection
of units in a layer, and the shaded trapezoids show the connections between layers.
A fixed, real-valued feature function ~x(s, a, d) transforms the game state s, action
a, and strategy document d into the input vector ~x. The second layer contains
two disjoint sets of hidden units ~y and ~z, where ~y encodes the sentence relevance
decisions, and ~z the predicate labeling. These are softmax layers, where only one
unit is active at any time. The units of the third layer ~f(s, a, yi, zi) are a set of
fixed real valued feature functions on s, a, d and the active units yi and zi of ~y
and ~z respectively.

Here s′ = 〈s, d〉, a′ = 〈a, yi, zi〉, ~w is the weight vector, and ~f(s, a, yi, zi) ∈ Rn is a feature
function over the state s, action a, relevant sentence yi, and its predicate labeling zi. This
structure of the action-value function allows it to explicitly learn the correlations between
textual information, and game states and actions. The action a∗ that maximizes Q(s, a) is
then selected as the best action for state s: 7

a∗ = arg max
a

Q(s, a).

5.1.4 Complete Joint Model

The two text analysis models, and the action-value function described above form the three
primary components of our text-aware game playing algorithm. We construct a single
principled model from these components by representing each of them via different layers
of the multi-layer neural network shown in Figure 4. Essentially, the text analysis decisions
are modeled as latent variables by the second, hidden layer of the network, while the final
output layer models the action-value function.

7. Note that we select action a∗ based on Q(s, a), which depends on the relevant sentence yi. This sentence
itself is selected conditioned on action a. This may look like a cyclic dependency between actions
and sentence relevance. However, that is not the case since Q(s, a), and therefore sentence relevance
p(y|s, a, d), is computed for every candidate action a ∈ A. The actual game action a∗ is then selected
from this estimate of Q(s, a).

675

Branavan, Silver, & Barzilay

The input layer ~x of our neural network encodes the inputs to the model – i.e., the
current state s, candidate action a, and document d. The second layer consists of two
disjoint sets of hidden units ~y and ~z, where each set operates as a stochastic 1-of-n softmax
selection layer (Bridle, 1990). The activation function for units in this layer is the standard
softmax function:

p(yi = 1|~x) = e~ui·~x
/ ∑

k

e~uk·~x,

where yi is the ith hidden unit of ~y, ~ui is the weight vector corresponding to yi, and k is
the number of units in the layer. Given that this activation function is mathematically
equivalent to a log-linear distribution, the layers ~y and ~z operate like log-linear models.
Node activation in such a softmax layer simulates sampling from the log-linear distribution.
We use layer ~y to replicate the log-linear model for sentence relevance from Equation (1),
with each node yi representing a single sentence. Similarly, each unit zi in layer ~z represents
a complete predicate labeling of a sentence, as in Equation (2).8

The third feature layer ~f of the neural network is deterministically computed given the
active units yi and zi of the softmax layers, and the values of the input layer. Each unit in
this layer corresponds to a fixed feature function fk(s, a, yi, zi) ∈ R. Finally the output layer
encodes the action-value function Q(s, a) as a weighted linear combination of the units of
the feature layer, thereby replicating Equation (3) and completing the joint model.

As an example of the kind of correlations learned by our model, consider Figure 5.
Here, a relevant sentence has already been selected for the given game state. The predicate
labeling of this sentence has identified the words “irrigate” and “settler” as describing the
action to take. When game roll-outs return higher rewards for the irrigate action of the
settler unit, our model can learn an association between this action and the words that
describe it. Similarly, it can learn the association between state description words and the
feature values of the current game state – e.g., the word “city” and the binary feature near-
city. This allows our method to leverage the automatically extracted textual information
to improve game play.

5.2 Parameter Estimation

Learning in our method is performed in an online fashion: at each game state st, the
algorithm performs a simulated game roll-out, observes the outcome of the simulation, and
updates the parameters ~u, ~v and ~w of the action-value function Q(st, at). As shown in
Figure 3, these three steps are repeated a fixed number of times at each actual game state.
The information from these roll-outs is then used to select the actual game action. The
algorithm relearns all the parameters of the action-value function for every new game state
st. This specializes the action-value function to the subgame starting from st. Learning
a specialized Q(st, at) for each game state is common and useful in games with complex
state spaces and dynamics, where learning a single global function approximation can be
particularly difficult (Sutton et al., 2007). A consequence of this function specialization
is the need for online learning – since we cannot predict which games states will be seen

8. Our intention is to incorporate, into action-value function, information from only the most relevant
sentence. Therefore, in practice, we only perform a predicate labeling of the sentence selected by the
relevance component of the model.

676

Learning to Win by Reading Manuals in a Monte-Carlo Framework

plains city

settler unit

"Use settlers to irrigate land near your city"Relevant text:

"irrigate", "settler"Predicted action words:

"land", "near", "city"Predicted state words:

irrigateSettlers unit, candidate action 1:

build-city

Features:

action = irrigate and action-word = "irrigate"
action = irrigate and state-word = "land"
action = irrigate and terrain = plains
action = irrigate and unit-type = settler
state-word = "city" and near-city = true

Features:

action = build-city and action-word = "irrigate"
action = build-city and state-word = "land"
action = build-city and terrain = plains
action = build-city and unit-type = settler
state-word = "city" and near-city = true

Settlers unit, candidate action 2:

Figure 5: An example of text and game attributes, and resulting candidate action features.
On the left is a portion of a game state with arrows indicating game attributes.
Also on the left is a sentence relevant to the game state along with action and
state words identified by predicate labeling. On the right are two candidate
actions for the settler unit along with the corresponding features. As mentioned
in the relevant sentence, irrigate is the better of the two actions – executing it
will lead to future higher game scores. This feedback and the features shown
above allow our model to learn effective mappings – such as between the action-
word “irrigate” and the action irrigate, and between state-word “city” and game
attribute near-city.

during testing, function specialization for those states cannot be done a priori, ruling out
the traditional training/test separation.

Since our model is a non-linear approximation of the underlying action-value function of
the game, we learn model parameters by applying non-linear regression to the observed final
utilities from the simulated roll-outs. Specifically, we adjust the parameters by stochastic
gradient descent, to minimize the mean-squared error between the action-value Q(s, a) and
the final utility R(sτ) for each observed game state s and action a. The resulting update
to model parameters θ is of the form:

∆θ = −α
2
∇θ [R(sτ)−Q(s, a)]2

= α [R(sτ)−Q(s, a)]∇θQ(s, a; θ),

where α is a learning rate parameter. This minimization is performed via standard error
backpropagation (Bryson & Ho, 1969; Rumelhart, Hinton, & Williams, 1986), resulting in
the following online parameter updates:

~w ← ~w + αw [Q−R(sτ)] ~f(s, a, yi, zj),

~ui ← ~ui + αu [Q−R(sτ)] Q̂ ~x [1− p(yi|·)],
~vi ← ~vi + αv [Q−R(sτ)] Q̂ ~x [1− p(zi|·)].

677

Branavan, Silver, & Barzilay

Here αw is the learning rate, Q = Q(s, a), and ~w, ~ui and ~vi are the parameters of the
final layer, the sentence relevance layer and the predicate labeling layer respectively. The
derivations of these update equations are given in Appendix A

6. Applying the Model

The game we test our model on, Civilization II, is a multi-player strategy game set either on
Earth or on a randomly generated world. Each player acts as the ruler of one civilization,
and starts with a few game units – i.e., two Settlers, two Workers and one Explorer. The
goal is to expand your civilization by developing new technologies, building cities and new
units, and to win the game by either controlling the entire world, or successfully sending a
spaceship to another world. The map of the game world is divided into a grid of typically
4000 squares, where each grid location represents a tile of either land or sea. Figure 6 shows
a portion of this world map from a particular instance of the game, along with the game
units of one player. In our experiments, we consider a two-player game of Civilization II
on a map of 1000 squares – the smallest map allowed on Freeciv. This map size is used by
both novice human players looking for an easier game, as well as advanced players wanting
a game of shorter duration. We test our algorithms against the built-in AI player of the
game, with the difficulty level at the default Normal setting.9

6.1 Game States and Actions

We define the game state for Monte-Carlo search, to be the map of the game world, along
with the attributes of each map tile, and the location and attributes of each player’s cities
and units. Some examples of these attributes are shown in Figure 7. The space of possible
actions for each city and unit is defined by the game rules given the current game state.
For example, cities can construct buildings such as harbors and banks, or create new units
of various types; while individual units can move around on the grid, and perform unit
specific actions such as irrigation for Settlers, and military defense for Archers. Since a
player controls multiple cities and units, the player’s action space at each turn is defined
by the combination of all possible actions for those cities and units. In our experiments, on
average, a player controls approximately 18 units with each unit having 15 possible actions.
The resulting action space for a player is very large – i.e., 1021. To effectively deal with this
large action space, we assume that given the state, the actions of each individual city and
unit are independent of the actions of all other cities and units of the same player.10 At
the same time, we maximize parameter sharing by using a single action-value function for
all the cities and units of the player.

9. Freeciv has five difficulty settings: Novice, Easy, Normal, Hard and Cheating. As evidenced by dis-
cussions on the game’s online forum (http://freeciv.wikia.com/index.php?title=Forum:Playing Freeciv),
some human players new to the game find even the Novice setting too hard.

10. Since each player executes game actions in turn, i.e. opposing units are fixed during an individual player’s
turn, the opponent’s moves do not enlarge the player’s action space.

678

Learning to Win by Reading Manuals in a Monte-Carlo Framework

Figure 6: A portion of the game map from one instance of a Civilization II game. Three
cities, and several units of a single player are visible on the map. Also visible are
the different terrain attributes of map tiles, such as grassland, hills, mountains
and deserts.

Nation attributes:

- Amount of gold in treasury
- % of world controlled
- Number of cities
- Population
- Known technologies

City attributes:

Unit attributes:

- City population
- Surrounding terrain and resources
- Amount of food & resources produced
- Number of units supported by city
- Number & type of units present

- Unit type (e.g., worker, explorer, archer, etc)
- Unit health & hit points
- Unit experience
- Is unit in a city?
- Is unit fortified?

Map tile attributes:

- Terrain type (e.g. grassland, mountain, etc)
- Tile resources (e.g. wheat, coal, wildlife, etc)
- Tile has river
- Construction on tile (city, road, rail, etc)
- Types of units (own or enemy) present

Figure 7: Example attributes of game state.

679

Branavan, Silver, & Barzilay

6.2 Utility Function

Critically important to the Monte-Carlo search algorithm, is the availability of a utility
function that can evaluate the outcomes of simulated game roll-outs. In the typical appli-
cation of the algorithm, the final game outcome in terms of victory or loss is used as the
utility function (Tesauro & Galperin, 1996). Unfortunately, the complexity of Civilization
II, and the length of a typical game, precludes the possibility of running simulation roll-outs
until game completion. The game, however, provides each player with a real valued game
score, which is a noisy indicator of the strength of their civilization. Since we are playing
a two-player game, our player’s score relative to the opponent’s can be used as the utility
function. Specifically, we use the ratio of the game score of the two players.11

6.3 Features

All the components of our method operate on features computed over a basic set of text and
game attributes. The text attributes include the words of each sentence along with their
parts-of-speech and dependency parse information such as dependency types and parent
words. The basic game attributes encode game information available to human players
via the game’s graphical user interface. Some examples of these attributes are shown in
Figure 7.

To identify the sentence most relevant to the current game state and candidate action,
the sentence relevance component computes features over the combined basic attributes of
the game and of each sentence from the text. These features ~φ, are of two types – the first
computes the Cartesian product between the attributes of the game and the attributes of
the candidate sentence. The second type consists of binary features that test for overlap
between words from the candidate sentence, and the text labels of the current game state
and candidate action. Given that only 3.2% of word tokens from the manual overlap with
labels from the game, these similarity features are highly sparse. However, they serve as
signposts to guide the learner – as shown by our results, our method is able to operate
effectively even in the absence of these features, but performs better when they are present.

Predicate labeling, unlike sentence relevance, is purely a language task and as such
operates only over the basic text attributes. The features for this component, ~ψ, compute
the Cartesian product of the candidate predicate label with the word’s type, part-of-speech
tag, and dependency parse information. The final component of our model, the action-value
approximation, operates over the attributes of the game state, the candidate action, the
sentence selected as relevant, and the predicate labeling of that sentence. The features of
this layer, ~f , compute a three way Cartesian product between the attributes of the candidate
action, the attributes of the game state, and the predicate labeled words of the relevant
sentence. Overall, ~φ, ~ψ and ~f compute approximately 158,500, 7,900, and 306,800 features
respectively – resulting in a total of 473,200 features for our full model. Figure 8 shows
some examples of these features.

11. The difference between players’ scores can also be used as the utility function. However, in practice the
score ratio produced better empirical performance across all algorithms and baselines.

680

Learning to Win by Reading Manuals in a Monte-Carlo Framework

1 if action = build-city
 & tile-has-river = true
 & word = "build"

0 otherwise

1 if action = irrigate
 & tile-is-next-to-city = true
 & word = "irrigate"

0 otherwise

1 if label = action
 & word = "city"
 & parent-word = "build"

0 otherwise

1 if label = state
 & word = "city"
 & parent-label = "near"

0 otherwise

1 if action = build-city
 & tile-has-river = true
 & action-word = "build"
 & state-word = "river"

0 otherwise

1 if action = irrigate
 & tile-terrain = plains
 & action-word = "irrigate"
 & state-word = "city"

0 otherwise

Sentence relevance features:

Predicate labeling features:

Action-value features:

Figure 8: Some examples of features used in our model. In each feature, conditions that
test game attributes are highlighted in blue, and those that test words in the
game manual are highlighted in red.

7. Experimental Setup

In this section, we describe the datasets, evaluation metrics, and experimental framework
used to test the performance of our method and the various baselines.

7.1 Datasets

We use the official game manual of Civilization II as our strategy guide document.12 The
text of this manual uses a vocabulary of 3638 word types, and is composed of 2083 sentences,
each on average 16.9 words long. This manual contains information about the rules of the
game, about the game user interface, and basic strategy advice about different aspects of
the game. We use the Stanford parser (de Marneffe, MacCartney, & Manning, 2006), under
default settings, to generate the dependency parse information for sentences in the game
manual.

7.2 Experimental Framework

To apply our method to the Civilization II game, we use the game’s open source reimple-
mentation Freeciv.13 We instrumented FreeCiv to allow our method to programmatically

12. www.civfanatics.com/content/civ2/reference/Civ2manual.zip
13. http://freeciv.wikia.com. Game version 2.2

681

Branavan, Silver, & Barzilay

Monte-Carlo
Player

Primary Game

Modified Game
GUI Client

Game
Server

Modified Game
GUI Client

Game
Server

Game Simulation 1

Modified Game
GUI Client

Game
Server

Game Simulation 2

Modified Game
GUI Client

Game
Server

Game Simulation 8

Game
Strategy Guide

Game State

In-memory
File System

Figure 9: A diagram of the experimental framework, showing the Monte-Carlo player, the
server for the primary game which the playing aims to win, and multiple game
servers for simulated play. Communications between the multiple processes com-
prising the framework is via UNIX sockets and an in-memory file system.

control the game – i.e., to measure the current game state, to execute game actions, to
save/load the current game state, and to start and end games.14

Across all experiments, we start the game at the same initial state and run it for 100
steps. At each step, we perform 500 Monte-Carlo roll-outs. Each roll-out is run for 20
simulated game steps before halting the simulation and evaluating the outcome. Note that
at each simulated game step, our algorithm needs to select an action for each game unit.
Given an average number of units per player of 18, this results in 180,000 decisions during
the 500 roll-outs. The pairing of each of these decisions with the corresponding roll-out
outcome is used as a datapoint to update model parameters. We use a fixed learning rate
of 0.0001 for all experiments. For our method, and for each of the baselines, we run 200
independent games in the above manner, with evaluations averaged across the 200 runs.
We use the same experimental settings across all methods, and all model parameters are
initialized to zero.

Our experimental setup consists of our Monte-Carlo player, a primary game which we
aim to play and win, and a set of simulation games. Both the primary game and the simula-

14. In addition to instrumentation, the code of FreeCiv (both the server and client) was changed to increase
simulation speed by several orders of magnitude, and to remove bugs which caused the game to crash.
To the best of our knowledge, the game rules and functionality are identical to the unmodified Freeciv
version 2.2

682

Learning to Win by Reading Manuals in a Monte-Carlo Framework

tions are simply separate instances of the Freeciv game. Each instance of the Freeciv game
is made up of one server process, which runs the actual game, and one client process, which
is controlled by the Monte-Carlo player. At the start of each roll-out, the simulations are
initialized with the current state of the primary game via the game save/reload functionality
of Freeciv. Figure 9 shows a diagram of this experimental framework.

The experiments were run on typical desktop PCs with single Intel Core i7 CPUs (4
hyper-threaded cores per CPU). The algorithms were implemented to execute 8 simulation
roll-outs in parallel by connecting to 8 independent simulation games. In this computational
setup, approximately 5 simulation roll-outs are executed per second for our full model, and
a single game of 100 steps runs in 3 hours. Since we treat the Freeciv game code as a
black box, special care was taken to ensure consistency across experiments: all code was
compiled on one specific machine, under a single fixed build environment (gcc 4.3.2); and
all experiments were run under identical settings on a fixed set of machines running a fixed
OS configuration (Linux kernel 2.6.35-25, libc 2.12.1).

7.3 Evaluation Metrics

We wish to evaluate two aspects of our method: how well it improves game play by leverag-
ing textual information, and how accurately it analyzes text by learning from game feedback.
We evaluate the first aspect by comparing our method against various baselines in terms of
the percentage of games won against the built-in AI of Freeciv. This AI is a fixed heuristic
algorithm designed using extensive knowledge of the game, with the intention of challeng-
ing human players.15 As such, it provides a good open-reference baseline. We evaluate our
method by measuring the percentage of games won, averaged over 100 independent runs.
However, full games can sometimes last for multiple days, making it difficult to do an exten-
sive analysis of model performance and contributing factors. For this reason, our primary
evaluation measures the percentage of games won within the first 100 game steps, averaged
over 200 independent runs. This evaluation is an underestimate of model performance –
any game where the player has not won by gaining control of the entire game map within
100 steps is considered a loss. Since games can remain tied after 100 steps, two equally
matched average players, playing against each other, will most likely have a win rate close
to zero under this evaluation.

8. Results

To adequately characterize the performance of our method, we evaluate it with respect to
several different aspects. In this section, we first describe its game playing performance
and analyze the impact of textual information. Then, we investigate the quality of the text
analysis produced by our model in terms of both sentence relevance and predicate labeling.

683

Branavan, Silver, & Barzilay

Method % Win % Loss Std. Err.

Random 0 100 —
Built-in AI 0 0 —

Game only 17.3 5.3 ± 2.7
Latent variable 26.1 3.7 ± 3.1
Full model 53.7 5.9 ± 3.5

Randomized text 40.3 4.3 ± 3.4

Table 1: Win rate of our method and several baselines within the first 100 game steps, while
playing against the built-in game AI. Games that are neither won nor lost are still
ongoing. Our model’s win rate is statistically significant against all baselines. All
results are averaged across 200 independent game runs. The standard errors shown
are for percentage wins.

Method % Wins Standard Error

Game only 24.8 ± 4.3
Latent variable 31.5 ± 4.6
Full model 65.4 ± 4.8

Table 2: Win rate of our method and two text-unaware baselines against the built-in AI.
All results are averaged across 100 independent game runs.

8.1 Game Performance

Table 1 shows the performance of our method and several baselines on the primary 100-step
evaluation. In this scenario, our language-aware Monte-Carlo algorithm wins on average
53.7% of games, substantially outperforming all baselines, while the best non-language-
aware method has a win rate of only 26.1%. The dismal performance of the Random baseline
and the game’s own Built-in AI, playing against itself, are indications of the difficulty of
winning games within the first 100 steps. As shown in Table 2, when evaluated on full length
games, our method has a win rate of 65.4% compared to 31.5% for the best text-unaware
baseline.16

15. While this AI is constrained to follow the rules of the game, it has access to information typically not
available to human players, such as information about the technology, cities and units of it’s opponents.
Our methods on the other hand are restricted to the actions and information available to human players.

16. Note that the performance of all methods on the full games is different from those listed in our previous
publications (Branavan, Silver, & Barzilay, 2011a, 2011b). These previous numbers were biased by a
code flaw in FreeCiv which caused the game to sporadically crash in the middle game play. While we
originally believed the crash to be random, it was subsequently discovered to happen more often in losing
games, and thereby biasing the win rates of all methods upwards. The numbers presented here are with
this game bug fixed, with no crashes observed in any of the experiments.

684

Learning to Win by Reading Manuals in a Monte-Carlo Framework

Monte-Carlo rollouts

O
b

se
rv

e
d

 g
a
m

e
 s

co
re

Figure 10: Observed game score as a function of Monte-Carlo roll-outs for our text-aware
full model, and the text-unaware latent-variable model. Model parameters are
updated after each roll-out, thus performance improves with roll-outs. As can be
seen, our full model’s performance improves dramatically over a small number
of roll-outs, demonstrating the benefit it derives from textual information.

8.1.1 Textual Advice and Game Performance

To verify and characterize the impact of textual advice on our model’s performance, we
compare it against several baselines that do not have access to textual information. The
simplest of these methods, Game only, models the action-value function Q(s, a) as a linear
approximation of the game’s state and action attributes. This non-text-aware method wins
only 17.3% of games (see Table 1). To confirm that our method’s improved performance
is not simply due to its inherently richer non-linear approximation, we also evaluate two
ablative non-linear baselines. The first of these, Latent variable extends the linear action-
value function of Game only with a set of latent variables. It is in essence a four layer
neural network, similar to our full model, where the second layer’s units are activated only
based on game information. This baseline wins 26.1% of games (Table 1), significantly
improving over the linear Game only baseline, but still trailing our text-aware method by
more than 27%. The second ablative baseline, Randomized text, is identical to our model,
except that it is given a randomly generated document as input. We generate this document
by randomly permuting the locations of words in the game manual, thereby maintaining
the document’s statistical properties in terms of type frequencies. This ensures that the
number of latent variables in this baseline is equal to that of our full model. Thus, this
baseline has a model capacity equal to our text-aware method while not having access to
any textual information. The performance of this baseline, which wins only 40.3% of games,
confirms that information extracted from text is indeed instrumental to the performance of
our method.

685

Branavan, Silver, & Barzilay

Figure 10 provides insight into how textual information helps improve game performance
– it shows the observed game score during the Monte-Carlo roll-outs for our full model and
the latent-variable baseline. As can be seen from this figure, the textual information guides
our model to a high-score region of the search space far quicker than the non-text aware
method, thus resulting in better overall performance. To evaluate how the performance
of our method varies with the amount of available textual-information, we conduct an
experiment where only random portions of the text are given to the algorithm. As shown
in Figure 11, our method’s performance varies linearly as a function of the amount of text,
with the Randomized text experiment corresponding to the point where no information is
available from text.

8.1.2 Impact of Seed Vocabulary on Performance

The sentence relevance component of our model uses features that compute the similarity
between words in a sentence, and the text labels of the game state and action. This assumes
the availability of a seed vocabulary that names game attributes. In our domain, of the 256
unique text labels present in the game, 135 occur in the vocabulary of the game manual.
This results in a sparse seed vocabulary of 135 words, covering only 3.7% of word types
and 3.2% of word tokens in the manual. Despite this sparsity, the seed vocabulary can have
a potentially large impact on model performance since it provides an initial set of word
groundings. To evaluate the importance of this initial grounding, we test our method with
an empty seed vocabulary. In this setup, our full model wins 49.0% of games, showing
that while the seed words are important, our method can also operate effectively in their
absence.

8.1.3 Linguistic Representation and Game Performance

To characterize the contribution of language to game performance, we conduct a series of
evaluations which vary the type and complexity of the linguistic analysis performed by our
method. The results of this evaluation are shown in Table 3. The first of these, Sentence
relevance, highlights the contributions of the two language components of our model. This
algorithm, which is identical to our full model but lacks the predicate labeling component,
wins 46.7% of games, showing that while it is essential to identify the textual advice relevant
to the current game state, a deeper syntactic analysis of the extracted text substantially
improves performance.

To evaluate the importance of dependency parse information in our language analysis,
we vary the type of features available to the predicate labeling component of our model.
The first of these ablative experiments, No dependency information, removes all dependency
features – leaving predicate labeling to operate only on word type features. The performance
of this baseline, a win rate of 39.6%, clearly shows that the dependency features are crucial
for model performance. The remaining three methods – No dependency label, No dependency
parent POS tag and No dependency parent word – each drop the dependency feature they
are named after. The contribution of these features to model performance can be seen in
Table 3.

686

Learning to Win by Reading Manuals in a Monte-Carlo Framework

Random
text

Percentage of document text given to our model

W
in

 r
a
te

Figure 11: The performance of our text-aware model as a function of the amount of text
available to it. We construct partial documents by randomly sub-sampling sen-
tences from the full game manual. The x-axis shows the amount of sentences
given to the method as a ratio of the full text. At the leftmost extreme is
the performance of the Randomized Text baseline, showing how it fits into the
performance trend at the point of having no useful textual information.

Method % Win % Loss Std. Err.

Full model 53.7 5.9 ± 3.5
Sentence relevance 46.7 2.8 ± 3.5
No dependency information 39.6 3.0 ± 3.4
No dependency label 50.1 3.0 ± 3.5
No depend. parent POS tag 42.6 4.0 ± 3.5
No depend. parent word 33.0 4.0 ± 3.3

Table 3: Win rates of several ablated versions of our model, showing the contribution of
different aspects of textual information to game performance. Sentence relevance
is identical to the Full model, except that it lacks the predicate labeling component.
The four methods at the bottom of the table ablate specific dependency features
(as indicated by the method’s name) from the predicate labeling component of the
full model.

8.1.4 Model Complexity vs Computation Time Trade-off

One inherent disadvantage of non-linear models, when compared to simpler linear models,
is the increase in computation time required for parameter estimation. In our Monte-Carlo
Search setup, model parameters are re-estimated after each simulated roll-out. Therefore,
given a fixed amount of time, more roll-outs can be done for a simpler and faster model. By
its very nature, the performance of Monte-Carlo Search improves with the number of roll-
outs. This trade-off between model complexity and roll-outs is important since a simpler

687

Branavan, Silver, & Barzilay

Full model

Latent variable

Game only

500 ro
ll-

ou
ts

20
0

ro
ll-

ou
ts

10
0

ro
ll-

ou
ts

Computation time per game step (seconds)

W
in

 r
a
te

60%

50%

40%

30%

20%

10%

0%
200 40 60 80 100 120 140

Figure 12: Win rate as a function of computation time per game step. For each Monte-
Carlo search method, win rate and computation time were measured for 100,
200 and 500 roll-outs per game step, respectively.

model could compensate by using more roll-outs, and thereby outperform more complex
ones. This scenario is particularly relevant in games where players have a limited amount
of time for each turn.

To explore this trade-off, we vary the number of simulation roll-outs allowed for each
method at each game step, recording the win-rate and the average computation time per
game. Figure 12 shows the results of this evaluation for 100, 200 and 500 roll-outs. While
the more complex methods have higher computational demands, these results clearly show
that even when given a fixed amount of computation time per game step, our text-aware
model still produces the best performance by a wide margin.

8.1.5 Learned Game Strategy

Qualitatively, all of the methods described here learn a basic rush strategy. Essentially,
they attempt to develop basic technologies, build an army, and take over opposing cities as
quickly as possible. The performance difference between the different models is essentially
due to how well they learn this strategy.

There are two basic reasons why our algorithms learn the rush strategy. First, since we
are attempting to maximize game score, the methods are implicitly biased towards finding
the fastest way to win – which happens to be the rush strategy when playing against
the built-in AI of Civilization 2. Second, more complex strategies typically require the
coordination of multiple game units. Since our models assume game units to be independent,

688

Learning to Win by Reading Manuals in a Monte-Carlo Framework

Phalanxes are twice as effective at defending cities as warriors.

Build the city on plains or grassland with a river running through it.

You can rename the city if you like, but we'll refer to it as washington.✘
There are many different strategies dictating the order in which
advances are researched

✘

A A AA

Use settlers or engineers to improve a terrain square within the city radius

✘✘

When the settlers becomes active, chose build road.
A AA

After the road is built, use the settlers to start improving the terrain.
AA AA A

SSSSSS

S SS

S SS

Figure 13: Examples of our method’s sentence relevance and predicate labeling decisions.
The box above shows two sentences (identified by green check marks) which
were predicted as relevant, and two which were not. The box below shows
the predicted predicate structure of three sentences, with “S” indicating state
description,“A” action description and background words unmarked. Mistakes
are identified with crosses.

they cannot explicitly learn such coordination – putting many complex strategies beyond
the capabilities of our algorithms.

8.2 Accuracy of Linguistic Analysis

As described in Section 5, text analysis in our method is tightly coupled with game playing
– both in terms of modeling, and in terms of learning from game feedback. We have seen
from the results thus far, that this text analysis does indeed help game play. In this section
we focus on the game-driven text analysis itself, and investigate how well it conforms to
more common notions of linguistic correctness. We do this by comparing model predictions
of sentence relevance and predicate labeling against manual annotations.

8.2.1 Sentence Relevance

Figure 13 shows examples of the sentence relevance decisions produced by our method.
To evaluate the accuracy of these decisions, we would ideally like to use a ground-truth
relevance annotation of the game’s user manual. This however, is impractical since the
relevance decision is dependent on the game context, and is hence specific to each time step
of each game instance. Therefore, we evaluate sentence relevance accuracy using a synthetic
document. We create this document by combining the original game manual with an equal

689

Branavan, Silver, & Barzilay

Sentence relevance
Moving average

S
e
n

te
n

ce
 r

e
le

v
a
n

ce
 a

cc
u

ra
cy

Game step

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1.0

Figure 14: Accuracy of our method’s sentence relevance predictions, averaged over 100 in-
dependent runs.

number of sentences which are known to be irrelevant to the game. These sentences are
collected by randomly sampling from the Wall Street Journal corpus (Marcus, Santorini,
& Marcinkiewicz, 1993).17 We evaluate sentence relevance on this synthetic document by
measuring the accuracy with which game manual sentences are picked as relevant.

In this evaluation, our method achieves an average accuracy of 71.8%. Given that our
model only has to differentiate between the game manual text and the Wall Street Journal,
this number may seem disappointing. Furthermore, as can be seen from Figure 14, the
sentence relevance accuracy varies widely as the game progresses, with a high average of
94.2% during the initial 25 game steps. In reality, this pattern of high initial accuracy fol-
lowed by a lower average is not entirely surprising: the official game manual for Civilization
II is written for first time players. As such, it focuses on the initial portion of the game,
providing little strategy advice relevant to subsequent game play.18 If this is the reason for
the observed sentence relevance trend, we would also expect the final layer of the neural
network to emphasize game features over text features after the first 25 steps of the game.
This is indeed the case, as can be seen in Figure 15.

To further test this hypothesis, we perform an experiment where the first n steps of the
game are played using our full model, and the subsequent 100− n steps are played without
using any textual information. The results of this evaluation for several values of n are
given in Figure 16, showing that the initial phase of the game is indeed where information
from the game manual is most useful. In fact, this hybrid method performs just as well
as our full model when n = 50, achieving a 53.3% win rate. This shows that our method

17. Note that sentences from the WSJ corpus contain words such as city which can potentially confuse our
algorithm, causing it to select such sentences are relevant to game play.

18. This is reminiscent of opening books for games like Chess or Go, which aim to guide the player to a
playable middle game, without providing much information about subsequent game play.

690

Learning to Win by Reading Manuals in a Monte-Carlo Framework

Game step

20 40 60 80 100

Te
x
t

fe
a
tu

re
 i
m

p
o
rt

a
n

ce

0

1.5

1.0

0.5

Te
x
t

fe
a
tu

re
s

d
o
m

in
a
te

G
a
m

e
 f

e
a
tu

re
s

d
o
m

in
a
te

Figure 15: Difference between the norms of the text features and game features of the
output layer of the neural network. Beyond the initial 25 steps of the game, our
method relies increasingly on game features.

of initial game steps where text information is used

W
in

 r
a
te

60%

40%

20%

0%
20 40 60 80 100

Figure 16: Graph showing how the availability of textual information during the initial steps
of the game affects the performance of our full model. Textual information is
given to the model for the first n steps (the x axis), beyond which point the
algorithm has no access to text, and becomes equivalent to the Latent Variable
model – i.e., the best non-text model.

is able to accurately identify relevant sentences when the information they contain is most
pertinent to game play, and most likely to produce better game performance.

691

Branavan, Silver, & Barzilay

Method S/A/B S/A

Random labeling 33.3% 50.0%
Model, first 100 steps 45.1% 78.9%
Model, first 25 steps 48.0% 92.7%

Table 4: Predicate labeling accuracy of our method and a random baseline. Column
“S/A/B” shows performance on the three-way labeling of words as state, action
or background, while column “S/A” shows accuracy on the task of differentiating
between state and action words.

state: grassland "city"

state: grassland "build"

action: settlers_build_city "city"

action: set_research "discovery"

game attribute word

action: settlers_build_city "settler"

action: settlers_goto_location "build"

action: city_build_barracks "construct"

action: research_alphabet "develop"

action: set_research "discovery"

state: hills "build"

Figure 17: Examples of word to game attribute associations that are learned via the feature
weights of our model.

8.2.2 Predicate Labeling

Figure 13 shows examples of the predicate structure output of our model. We evaluate the
accuracy of this labeling by comparing it against a gold-standard annotation of the game
manual.19 Table 4 shows the performance of our method in terms of how accurately it labels
words as state, action or background, and also how accurately it differentiates between state
and action words. In addition to showing a performance improvement over the random
baseline, these results display a clear trend: under both evaluations, labeling accuracy is
higher during the initial stages of the game. This is to be expected since the model relies
heavily on textual features during the beginning of the game (see Figure 15).

To verify the usefulness of our method’s predicate labeling, we perform a final set of
experiments where predicate labels are selected uniformly at random within our full model.
This random labeling results in a win rate of 44% – a performance similar to the sentence
relevance model which uses no predicate information. This confirms that our method is
able to identify a predicate structure which, while noisy, provides information relevant to
game play. Figure 17 shows examples of how this textual information is grounded in the
game, by way of the associations learned between words and game attributes in the final
layer of the full model. For example, our model learns a strong association between the

19. Note that a ground truth labeling of words as either action-description, state-description, or background
is based purely on the semantics of the sentence, and is independent of game state. For this reason,
manual annotation is feasible, unlike in the case of sentence relevance.

692

Learning to Win by Reading Manuals in a Monte-Carlo Framework

game-state attribute grassland and the words “city” and “build”, indicating that textual
information about building cities maybe very useful when a player’s unit is near grassland.

9. Conclusions

In this paper we presented a novel approach for improving the performance of control
applications by leveraging information automatically extracted from text documents, while
at the same time learning language analysis based on control feedback. The model biases the
learned strategy by enriching the policy function with text features, thereby modeling the
mapping between words in a manual and state-specific action selection. To effectively learn
this grounding, the model identifies text relevant to the current game state, and induces
a predicate structure on that text. These linguistic decisions are modeled jointly using a
non-linear policy function trained in the Monte-Carlo Search framework.

Empirical results show that our model is able to significantly improve game win rate
by leveraging textual information when compared to strong language-agnostic baselines.
We also demonstrate that despite the increased complexity of our model, the knowledge
it acquires enables it to sustain good performance even when the number of simulations is
reduced. Moreover, deeper linguistic analysis, in the form of a predicate labeling of text,
further improves game play. We show that information about the syntactic structure of
text is crucial for such an analysis, and ignoring this information has a large impact on
model performance. Finally, our experiments demonstrate that by tightly coupling control
and linguistic features, the model is able to deliver robust performance in the presence of
the noise inherent in automatic language analysis.

Bibliographical Note

Portions of this work were previously presented in two conference publications (Branavan
et al., 2011a, 2011b). This article significantly extends our previous work, most notably by
providing an analysis of model properties such as the impact of linguistic representation on
model performance, dependence of the model on bootstrapping conditions, and the trade-
off between the model’s representational power and its empirical complexity (Section 8).
The paper also significantly increases the volume of experiments on which we base our
conclusions. In addition, we provide a comprehensive description of the model, providing
full mathematical derivations supporting the algorithm (Section 5.1 and Appendix A).

Acknowledgments

The authors acknowledge the support of the NSF (CAREER grant IIS-0448168, grant IIS-
0835652), the DARPA BOLT Program (HR0011-11-2-0008), the DARPA Machine Reading
Program (FA8750-09-C-0172, PO#4910018860), Batelle (PO#300662) and the Microsoft
Research New Faculty Fellowship. Thanks to the anonymous reviewers, Michael Collins,
Tommi Jaakkola, Leslie Kaelbling, Nate Kushman, Sasha Rush, Luke Zettlemoyer, and the
MIT NLP group for their suggestions and comments. Any opinions, findings, conclusions,
or recommendations expressed in this paper are those of the authors, and do not necessarily
reflect the views of the funding organizations.

693

Branavan, Silver, & Barzilay

Appendix A. Parameter Estimation

The parameter of our model are estimated via standard error backpropagation (Bryson &
Ho, 1969; Rumelhart et al., 1986). To derive the parameter updates, consider the slightly
simplified neural network shown below. This network is identical to our model, but for the
sake of clarity, it has only a single second layer ~y instead of the two parallel second layers
~y and ~z. The parameter updates for these parallel layers ~y and ~z are similar, therefore we
will show the derivation only for ~y in addition to the updates for the final layer.

As in our model, the nodes yi in the network above are activated via a softmax function;
the third layer, ~f , is computed deterministically from the active nodes of the second layer
via the function ~g(yi, ~x); and the output Q is a linear combination of ~f weighted by ~w:

p(yi = 1 | ~x; ~ui) =
e~ui·~x∑
k

e~uk·~x
,

~f =
∑
i

~g(~x, yi) p(yi | ~x; ~ui),

Q = ~w · ~f.

Our goal is to minimize the mean-squared error e by gradient descent. We achieve this by
updating model parameters along the gradient of e with respect to each parameter. Using
θi as a general term to indicate our model’s parameters, this update takes the form:

e =
1

2
(Q−R)2,

∆θi =
∂e

∂θi

= (Q−R)
∂Q

∂θi
. (4)

From Equation (4), the updates for final layer parameters are given by:

∆wi = (Q−R)
∂Q

∂wi

= (Q−R)
∂

∂wi
~w · ~f

= (Q−R) fi.

694

Learning to Win by Reading Manuals in a Monte-Carlo Framework

Since our model samples the one most relevant sentence yi, and the best predicate labeling
zi, the resulting online updates for the output layer parameters ~w are:

~w ← ~w + αw [Q−R(sτ)] ~f(s, a, yi, zj),

where αw is the learning rate, and Q = Q(s, a). The updates for the second layer’s param-
eters are similar, but somewhat more involved. Again, from Equation (4),

∆ui,j = (Q−R)
∂Q

∂ui,j

= (Q−R)
∂

∂ui,j
~w · ~f

= (Q−R)
∂

∂ui,j
~w ·
∑
k

~g(~x, yk) p(yi | ~x; ~uk)

= (Q−R) ~w · ~g(~x, yi)
∂

∂ui,j
p(yi | ~x; ~ui). (5)

Considering the final term in the above equation separately,

∂

∂ui,j
p(yi | ~x; ~ui) =

∂

∂ui,j

e~ui·~x

Z
, where Z =

∑
k

e~uk·~x

=

(
e~ui·~x

Z

) ∂
∂ui,j

e~ui·~x

Z(
e~ui·~x

Z

)
=

(
e~ui·~x

Z

)
∂

∂ui,j
log

[
e~ui·~x

Z

]
=

(
e~ui·~x

Z

)[
xj −

∂

∂ui,j
logZ

]
=

(
e~ui·~x

Z

)[
xj −

1

Z

∂Z

∂ui,j

]
=

(
e~ui·~x

Z

)[
xj −

1

Z

∂

∂ui,j

∑
k

e~uk·~x

]

=

(
e~ui·~x

Z

)[
xj −

1

Z
xje

~uk·~x
]

=

(
e~ui·~x

Z

)
xj

[
1− e~ui·~x

Z

]
.

695

Branavan, Silver, & Barzilay

Therefore, from Equation (5),

∆ui,j = (Q−R) ~w · ~g(~x, yi)
∂

∂ui,j
p(yi | ~x; ~ui)

= (Q−R) ~w · ~g(~x, yi)

(
e~ui·~x

Z

)
xj

[
1− e~ui·~x

Z

]
= (Q−R) xj ~w · ~g(~x, yi) p(yi | ~x; ~ui) [1− p(yi | ~x; ~ui)]

= (Q−R) xj Q̂ [1− p(yi | ~x; ~ui)] ,

where Q̂ = ~w · ~g(~x, yi) p(yi | ~x; ~ui).

The resulting online updates for the sentence relevance and predicate labeling parameters
~u and ~v are:

~ui ← ~ui + αu [Q−R(sτ)] Q̂ ~x [1− p(yi|·)],

~vi ← ~vi + αv [Q−R(sτ)] Q̂ ~x [1− p(zi|·)].

696

Learning to Win by Reading Manuals in a Monte-Carlo Framework

Appendix B. Example of Sentence Relevance Predictions

Shown below is a portion of the strategy guide for Civilization II. Sentences that were
identified as relevant by our text-aware model are highlighted in green.

Choosing your location.

When building a new city, carefully plan where you place it. Citizens can

work the terrain surrounding the city square in an x-shaped pattern (see

city radius for a diagram showing the exact dimensions). This area is called

the city radius (the terrain square on which the settlers were standing

becomes the city square). The natural resources available where a

population settles affect its ability to produce food and goods. Cities built on

or near water sources can irrigate to increase their crop yields, and cities

near mineral outcroppings can mine for raw materials. On the other hand,

cities surrounded by desert are always handicapped by the aridness of their

terrain, and cities encircled by mountains find arable cropland at a

premium. In addition to the economic potential within the city's radius, you

need to consider the proximity of other cities and the strategic value of a

location. Ideally, you want to locate cities in areas that offer a combination

of benefits : food for population growth, raw materials for production, and

river or coastal areas for trade. Where possible, take advantage of the

presence of special resources on terrain squares (see terrain & movement

for details on their benefits).

Strategic value.

The strategic value of a city site is a final consideration. A city square's

underlying terrain can increase any defender's strength when that city

comes under attack. In some circumstances, the defensive value of a

particular city's terrain might be more important than the economic value;

consider the case where a continent narrows to a bottleneck and a rival

holds the other side. Good defensive terrain (hills, mountains, and jungle) is

generally poor for food production and inhibits the early growth of a city. If

you need to compromise between growth and defense, build the city on a

plains or grassland square with a river running through it if possible. This

yields decent trade production and gains a 50 percent defense bonus.

Regardless of where a city is built, the city square is easier to defend than

the same unimproved terrain. In a city you can build the city walls

improvement, which triples the defense factors of military units stationed

there. Also, units defending a city square are destroyed one at a time if they

lose. Outside of cities, all units stacked together are destroyed when any

military unit in the stack is defeated (units in fortresses are the only

exception; see fortresses). Placing some cities on the seacoast gives you

access to the ocean. You can launch ship units to explore the world and to

transport your units overseas. With few coastal cities, your sea power is

inhibited.

697

Branavan, Silver, & Barzilay

Appendix C. Examples of Predicate Labeling Predictions

Listed below are the predicate labellings computed by our text-aware method on example
sentences from the game manual. The predicted labels are indicated below the words with
the letters A, S, and B for action-description, state-description and background respectively.
Incorrect labels are indicated by a red check mark, along with the correct label in brackets.

When the settlers becomes active, chose build road.
A AAS SS

After the road is built, use the settlers to start improving the terrain.
AA AA AS SS

A A AA

Use settlers or engineers to improve a terrain square within the city radius

✘✘ SSSSSS (A) (S)

AB

Bronze working allows you to build phalanx units

✘S AAS (S)

In order to expand your civilization , you need to build other cities

✘AS AS B B(A)✘ (S)

In order to protect the city , the phalanx must remain inside

✘✘✘✘B(S) B(S)S S(A) AA B(A)

In a city you can build the city walls improvement
A✘ (S) ✘B(A) A A A

Once the city is undefended , you can move a friendly army into the city and capture it
A A A A✘B (S)S S

You can build a city on any terrain square except for ocean.
A S✘ (A) ✘B (S) S SA✘ (S)

You can launch ship units to explore the world and to transport your units overseas
A A S✘ (A) S ✘B (S) ✘B (S) BS

You can build a wonder only if you have discovered the advance that makes it possible
A S✘ (A) S S S S

When a city is in disorder, disband distant military units, return them to their home cities,

or change their home cities

S✘ (A) S✘ (A)A AAA

A A A

A✘ (S) S

As soon as you've found a decent site , you want your settlers to build a

permanent settlement - a city

✘

✘

✘B(S) ✘B(S)S S A ✘B A

S A(A)

(B) (A)

B

698

Learning to Win by Reading Manuals in a Monte-Carlo Framework

Appendix D. Examples of Learned Text to Game Attribute Mappings

Shown below are examples of some of the word to game-attribute associations learned by
our model. The top ten game attributes with the strongest association by feature weight are
listed for three of the example words – “attack”, “build” and “grassland”. For the fourth
word, “settler”, only seven attributes had non-zero weights in experiments used to collect
these statistics.

phalanx (unit)

warriors (unit)

colossus (wonder)

city walls (city improvement)

archers (unit)

catapult (unit)

palace (city improvement)

coinage (city production)

city_build_warriors (action)

city_build_phalanx (action)

worker_goto (action)

settler_autosettle (action)

worker_autosettle (action)

pheasant (terrain attribute)

settler_irrigate (action)

worker_mine (action)

build_city_walls (action)

build_catapult (action)

swamp (terrain attribute)

grassland (terrain attribute)

settler_build_city (action)

worker_continue_action (action)

pheasant (terrain attribute)

city_build_improvement (action)

city_max_production (action)

settlers (state attribute)

city_max_food (action)

settler_goto (action)

worker_build_road (action)

pyramids (city attribute)

attack build

grassland

settlers (state attribute)

settler_build_city (action)

city (state_attribute)

grassland (terrain_attribute)

plains (terrain_attribute)

road (terrain_attribute)

workers (state attribute)

settler

699

Branavan, Silver, & Barzilay

Appendix E. Features Used by the Model

Features used predict sentence relevance

The following templates are used to compute the features for sentence relevance:

• Word W is present in sentence.

• Number of words that match the text label of the current unit, an attribute in the
immediate neighborhood of the unit, or the action under consideration.

• The unit’s type is U, (e.g., worker) and word W is present in sentence.

• The action type is A, (e.g., irrigate) and word W is present in sentence.

Features used predict predicate structure

The following templates are used to compute the features for the predicate labeling of words.
The label being considered for the word (i.e., action, state or background) is denoted by
L.

• Label is L and the word type is W.

• Label is L and the part-of-speech tag of the word is T.

• Label is L and the parent word in the dependency tree is W.

• Label is L and the dependency type to the dependency parent word is D.

• Label is L and the part-of-speech of the dependency parent word is T.

• Label is L and the word is a leaf node in the dependency tree.

• Label is L and the word is not a leaf node in the dependency tree.

• Label is L and the word matches a state attribute name.

• Label is L and the word matches a unit type name.

• Label is L and the word matches a action name.

Features used to model action-value function

The following templates are used to compute the features of the action-value approximation.
Unless otherwise mentioned, the features look at the attributes of the player controlled by
our model.

• Percentage of world controlled.

• Percentage of world explored.

• Player’s game score.

• Opponent’s game score.

• Number of cities.

• Average size of cities.

• Total size of cities.

700

Learning to Win by Reading Manuals in a Monte-Carlo Framework

• Number of units.

• Number of veteran units.

• Wealth in gold.

• Excess food produced.

• Excess shield produced.

• Excess trade produced.

• Excess science produced.

• Excess gold produced.

• Excess luxury produced.

• Name of technology currently being researched.

• Percentage completion of current research.

• Percentage remaining of current research.

• Number of game turns before current research is completed.

The following feature templates are applied to each city controlled by the player:

• Current size of city.

• Number of turns before city grows in size.

• Amount of food stored in city.

• Amount of shield stored in city (“shields” are used to construct new buildings and
units in the city).

• Turns remaining before current construction is completed.

• Surplus food production in city.

• Surplus shield production in city.

• Surplus trade production in city.

• Surplus science production in city.

• Surplus gold production in city.

• Surplus luxury production in city.

• Distance to closest friendly city.

• Average distance to friendly cities.

• City governance type.

• Type of building or unit currently under construction.

• Types of buildings already constructed in city.

• Type of terrain surrounding the city.

• Type of resources available in the city’s neighborhood.

701

Branavan, Silver, & Barzilay

• Is there another city in the neighborhood.

• Is there an enemy unit in the neighborhood.

• Is there an enemy city in the neighborhood.

The following feature templates are applied to each unit controlled by the player:

• Type of unit.

• Moves left for unit in current game turn.

• Current health of unit.

• Hit-points of unit.

• Is unit a veteran.

• Distance to closest friendly city.

• Average distance to friendly cities.

• Type of terrain surrounding the unit.

• Type of resources available in the unit’s neighborhood.

• Is there an enemy unit in the neighborhood.

• Is there an enemy city in the neighborhood.

The following feature templates are applied to each predicate-labeled word in the sentence
selected as relevant, combined with the current state and action attributes:

• Word W is present in sentence, and the action being considered is A.

• Word W with predicate label P is present in sentence, and the action being considered
is A.

• Word W is present in sentence, the current unit’s type is U, and the action being
considered is A.

• Word W with predicate label P is present in sentence, the current unit’s type is U,
and the action being considered is A.

• Word W is present in sentence, and the current unit’s type is U.

• Word W with predicate label P is present in sentence, and the current unit’s type is
U.

• Word W is present in sentence, and an attribute with text label A is present in the
current unit’s neighborhood.

• Word W with predicate label P is present in sentence, and an attribute with text label
A is present in the current unit’s neighborhood.

702

Learning to Win by Reading Manuals in a Monte-Carlo Framework

References

Balla, R., & Fern, A. (2009). UCT for tactical assault planning in real-time strategy games.
In Proceedings of IJCAI, pp. 40–45.

Barnard, K., & Forsyth, D. A. (2001). Learning the semantics of words and pictures. In
Proceedings of ICCV, pp. 408–415.

Barto, A. G., & Mahadevan, S. (2003). Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13, 341–379.

Billings, D., Castillo, L. P., Schaeffer, J., & Szafron, D. (1999). Using probabilistic knowledge
and simulation to play poker. In Proceedings of AAAI/IAAI, pp. 697–703.

Branavan, S., Chen, H., Zettlemoyer, L., & Barzilay, R. (2009). Reinforcement learning for
mapping instructions to actions. In Proceedings of ACL, pp. 82–90.

Branavan, S., Silver, D., & Barzilay, R. (2011a). Learning to win by reading manuals in a
monte-carlo framework. In Proceedings of ACL, pp. 268–277.

Branavan, S., Silver, D., & Barzilay, R. (2011b). Non-linear monte-carlo search in civilization
II. In Proceedings of IJCAI, pp. 2404–2410.

Branavan, S., Zettlemoyer, L., & Barzilay, R. (2010). Reading between the lines: Learning
to map high-level instructions to commands. In Proceedings of ACL, pp. 1268–1277.

Bridle, J. S. (1990). Training stochastic model recognition algorithms as networks can lead
to maximum mutual information estimation of parameters. In Advances in NIPS, pp.
211–217.

Bryson, A. E., & Ho, Y.-C. (1969). Applied optimal control: optimization, estimation, and
control. Blaisdell Publishing Company.

Chen, D. L., & Mooney, R. J. (2008). Learning to sportscast: a test of grounded language
acquisition. In Proceedings of ICML, pp. 128–135.

Chen, D. L., & Mooney, R. J. (2011). Learning to interpret natural language navigation
instructions from observations. In Proceedings of AAAI, pp. 859–865.

Clarke, J., Goldwasser, D., Chang, M.-W., & Roth, D. (2010). Driving semantic parsing
from the world’s response. In Proceedings of CoNNL, pp. 18–27.

de Marneffe, M.-C., MacCartney, B., & Manning, C. D. (2006). Generating typed depen-
dency parses from phrase structure parses. In Proceedings of LREC, pp. 449–454.

Eisenstein, J., Clarke, J., Goldwasser, D., & Roth, D. (2009). Reading to learn: Constructing
features from semantic abstracts. In Proceedings of EMNLP, pp. 958–967.

Fleischman, M., & Roy, D. (2005). Intentional context in situated natural language learning.
In Proceedings of CoNLL, pp. 104–111.

Gelly, S., Wang, Y., Munos, R., & Teytaud, O. (2006). Modification of UCT with patterns
in Monte-Carlo Go. Tech. rep. 6062, INRIA.

Goldwasser, D., Reichart, R., Clarke, J., & Roth, D. (2011). Confidence driven unsupervised
semantic parsing. In Proceedings of ACL, pp. 1486–1495.

703

Branavan, Silver, & Barzilay

Gorniak, P., & Roy, D. (2005). Speaking with your sidekick: Understanding situated speech
in computer role playing games. In Proceedings of AIIDE, pp. 57–62.

Liang, P., Jordan, M. I., & Klein, D. (2009). Learning semantic correspondences with less
supervision. In Proceedings of ACL, pp. 91–99.

Liang, P., Jordan, M. I., & Klein, D. (2011). Learning dependency-based compositional
semantics. In Proceedings of ACL, pp. 590–599.

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large annotated
corpus of english: The penn treebank. Computational Linguistics, 19 (2), 313–330.

Oates, J. T. (2001). Grounding knowledge in sensors: Unsupervised learning for language
and planning. Ph.D. thesis, University of Massachusetts Amherst.

Roy, D. K., & Pentland, A. P. (2002). Learning words from sights and sounds: a computa-
tional model. Cognitive Science 26, 113–146.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323, 533–536.

Schäfer, J. (2008). The UCT algorithm applied to games with imperfect information.
Diploma Thesis. Otto-von-Guericke-Universität Magdeburg.

Sheppard, B. (2002). World-championship-caliber Scrabble. Artificial Intelligence, 134 (1-2),
241–275.

Silver, D., Sutton, R., & Müller, M. (2008). Sample-based learning and search with perma-
nent and transient memories. In Proceedings of ICML, pp. 968–975.

Siskind, J. M. (2001). Grounding the lexical semantics of verbs in visual perception using
force dynamics and event logic. Journal of Artificial Intelligence Research, 15, 31–90.

Sturtevant, N. (2008). An analysis of UCT in multi-player games. In Proceedings of ICCG,
pp. 37–49.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. The MIT
Press.

Sutton, R. S., Koop, A., & Silver, D. (2007). On the role of tracking in stationary environ-
ments. In Proceedings of ICML, pp. 871–878.

Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee, A. G., Teller, S., & Roy, N.
(2011). Understanding natural language commands for robotic navigation and mobile
manipulation. In Proceedings of AAAI, pp. 1507–1514.

Tesauro, G., & Galperin, G. (1996). On-line policy improvement using Monte-Carlo search.
In Advances in NIPS, pp. 1068–1074.

Vogel, A., & Jurafsky, D. (2010). Learning to follow navigational directions. In Proceedings
of the ACL, pp. 806–814.

Yu, C., & Ballard, D. H. (2004). On the integration of grounding language and learning
objects. In Proceedings of AAAI, pp. 488–493.

Zettlemoyer, L., & Collins, M. (2009). Learning context-dependent mappings from sentences
to logical form. In Proceedings of ACL, pp. 976–984.

704

