Advanced Topics in Machine Learning, GI13, 2010/11

Answer any THREE questions. Each question is worth 20 marks. Use separate answer books
for PART A and PART B. Gatsby PhD students only: answer either TWO questions from
PART A and ONE question from PART B; or ONE question from PART A and TWO questions
from PART B.

Marks for each part of each question are indicated in square brackets

Calculators are NOT permitted

Part A: Kernel Methods

Part B: Reinforcement Learning

1. Consider the following Markov Decision Process (MDP) with discount factor y = 0.5.
Upper case letters A, B, C represent states; arcs represent state transitions; lower case
letters ab, ba, bc, ca, cb represent actions; signed integers represent rewards; and fractions

represent transition probabilities.

3/4

e Define the state-value function V*(s) for a discounted MDP
[1 marks]

Answer: V*(s) = Ex[ri11 +Yri42+...[ss = 5]

e Write down the Bellman expectation equation for state-value functions
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[2 marks]

Answer:

V*(s) =Er[rr41 + YW (s41)]s: = s] or
=Y n(s,a) (‘J{S +v) PV ) or
aca s'es

V7t — KTC +,Yfpnvﬂ

Consider the uniform random policy 7;(s,a) that takes all actions from state s with
equal probability. Starting with an initial value function of Vi (A) =V, (B) =V;(C) =
2, apply one synchronous iteration of iterative policy evaluation (i.e. one backup for
each state) to compute a new value function V> (s)

[3 marks]

Answer:

Va(A) = —8+0.5V|(B) = —7
Va(B) = 0.5(2+0.5V1(A)) +0.5(—2+0.5V,(C)) = 1
V2(C) = 0.5(8+0.5V1(B)) +0.5(4+0.5(1/4V|(A) +3/4V(C))) =7

Apply one iteration of greedy policy improvement to compute a new, deterministic
policy 1, (s)
[2 marks]

Answer: m(A) = ab
02(B,ba) =240.5V2(A) = —1.5,

02(B,bc) = —2+0.5V,(C) = 1.5 = my(B) = bc
02(C,ca) =4+0.5(1/4V2(A) +3/4V2(B)) = 5.75,
02(C,cb) =8+0.5V,(B) =8.5 = my(C) =cb

Consider a deterministic policy 7(s). Prove that if a new policy @’ is greedy with
respect to V™ then it must be better than or equal to T, i.e. V¥ (s) > V7(s) for all s;
and that if V™ (s) = V™(s) for all s then 7 must be an optimal policy.

[5 marks]

Answer: Greedy policy improvement is given by 7'(s) = argmax Q"(s,a). This is
acA
an improvement over one step because for any state s, Q™ (s, 7' (s)) = max Q™ (s,a) >
acAa
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O™ (s,m(s)) =V™(s). It therefore improves the value function, V*(s) < Q™ (s, 7' (s)) =
B [rin +0V™ (sr41) Ise = 8] < B [re41 Y0 (5141, W (s5141)) e = 8] < .. SE[r +
Yris2+...|s; = 5] = VT (). If improvements stop, i.e. O%(s,T'(s)) = max 0" (s,a) =
O™(s,m(s)) = V™(s) then V™ has satisfied the Bellman optimality equation, so 7 and

must be an optimal policy.

e Define the optimal state-value function V*(s) for an MDP
[1 marks]

Answer: V*(s) = max V™(s)

T

e Write down the Bellman optimality equation for state-value functions
[2 marks]

Answer:

V*(s) = max R’ +7) 2LV

s'eS

V*(s) = max Ex[re1 YV (s041)|s: = 5] or
V* = max R +yPV*
a
e Starting with an initial value function of V;(A) = V;(B) = V;(C) = 2, apply one

synchronous iteration of value iteration (i.e. one backup for each state) to compute

a new value function V;(s).
[3 marks]

Answer: V,(A) = —=7,V»(B) =3,V»(C) =9

e Is your new value function V,(s) optimal? Justify your answer.
[1 marks]

Answer: Applying one more iteration, V3(A) = —6.5 # V»(A) hence V; is not a

fixed point of the Bellman optimality equation.

[Total 20 marks]
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2. Consider an undiscounted Markov Reward Process with two states A and B. The transition

matrix and reward function are unknown, but you have observed two sample episodes:

A+3—-A+2—B—4—A+4— B—3 — terminate

B—2 —+A+3— B—3 — terminate

In the above episodes, sample state transitions and sample rewards are shown at each step,

e.g. A+3 — A indicates a transition from state A to state A, with a reward of +3.

e Using first-visit Monte-Carlo evaluation, estimate the state-value function V(A),V (B)

[2 marks]
Answer:

V(A)=1/2(240) =1

V(B)=1/2(-3+-2)=—5/2

e Using every-visit Monte-Carlo evaluation, estimate the state-value function V(A),V(B)

[2 marks]

Answer:

V(A)=1/4Q2+—-1+1+0)=1/2
V(B)=1/4(-3+—-3+—-2+-3)=—11/4

e Draw a diagram of the Markov Reward Process that best explains these two episodes
(i.e. the model that maximises the likelihood of the data - although it is not necessary

to prove this fact). Show rewards and transition probabilities on your diagram.
[4 marks]

term

1/2

Answer:
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e Define the Bellman equation for a Markov reward process
[2 marks]

Answer:

V(s) =E[r+1 +Y (si+1)|s: = s] or
V(S) =R +Y Z ?ss’vn(sl) or

s'es

V=R +yPV

e Solve the Bellman equation to give the true state-value function V(A),V(B). Hint:

solve the Bellman equations directly, rather than iteratively. Answer:

V(A) =3+1/4V(A) +3/4V(B)
V(B) = =34 1/2V(A)
V(A)=2

V(B) =

[4 marks]

e What value function would batch TD(0) find, i.e. if TD(0) was applied repeatedly

to these two episodes?
[2 marks]

Answer: The solution to the above MDP,

e What value function would batch TD(1) find, using accumulating eligibility traces?

[2 marks]

Answer: The same as every-visit Monte-Carlo

V(A)=1/2

V(B)=—11/4
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e What value function would LSTD(0) find?
[2 marks]

Answer: The same as batch TD(0)

[Total 20 marks]
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A rat is involved in an experiment. It experiences one episode. At the first step it hears
a bell. At the second step it sees a light. At the third step it both hears a bell and sees
a light. It then receives some food, worth +1 reward, and the episode terminates on the

fourth step. All other rewards were zero. The experiment is undiscounted.

e Represent the rat’s state s by a vector of two binary features, bell(s) € {0,1} and
light(s) € {0,1}. Write down the sequence of feature vectors corresponding to this
episode.

[3 marks]

1 0 1
Answer: , ,
0 1 1
e Approximate the state-value function by a linear combination of these features with
two parameters: b - bell(s) +1-light(s). If b =2 and [ = —2 then write down the

sequence of approximate values corresponding to this episode.

[3 marks]
Answer: 2, —2,0 and also O for the terminal state
e Define the A-return v}
[1 marks]

Answer:

v;(n) =Tl T V42t +'Yn_]7”t+n +Y'V (sr4n)
V? _ (1 _7\‘) Z xn—]vﬁn)

n=1

e Write down the sequence of A-returns v?‘ corresponding to this episode, for A = 0.5

andb=2,1=-2
[3 marks]

Answer:

W =0.5(—2+0.5x0+0.5x1)=—3/4
WA =050+1x1)=1/2

M=052x1)=1
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Using the forward-view TD(A) algorithm and your linear function approximator,
what are the sequence of updates to weight »? What is the total update to weight b?

Use A=0.5,y= 1,00 =0.5 and start withb =2,1 = -2
[3 marks]

Answer:

Aby = a(V} =V (s1))bell(s;) =0.5(—3/4—2)1 = —11/8

Y Ab=(—11/84+-1/2)=-7/8

Define the TD(A) accumulating eligibility trace e when using linear value function

approximation
[1 marks]

Answer: ¢; = Yhe;—1 + O(s)

Write down the sequence of eligibility traces e; corresponding to the bell, using

A=05y=1
[3 marks]

Answer: 1,1/2,5/4

Using the backward-view TD(A) algorithm and your linear function approximator,
what are the sequence of updates to weight b? (Use offline updates, i.e. do not ac-
tually change your weights, just accumulate your updates). What is the total update

to weight b? Use A =0.5,y= 1,00 = 0.5 and start withb =2,/ = -2
[3 marks]

Aby = adje; =0.5(0+—-2—-2)1 =2

Aby = 08rer = 0.5(0+0——-2)1/2=1/2

Aby = 083e3 = 0.5(1+0—0)5/4 =5/8
Y Ab=(-2+1/2+5/8)=-17/8

[Total 20 marks]



END OF PAPER
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