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Introduction

Policy-Based Reinforcement Learning

In the last lecture we approximated the value or action-value
function using parameters θ,

Vθ(s) ≈ V π(s)

Qθ(s, a) ≈ Qπ(s, a)

A policy was generated directly from the value function

e.g. using ε-greedy

In this lecture we will directly parametrise the policy

πθ(s, a) = P [a | s, θ]

We will focus again on model-free reinforcement learning
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Introduction

Value-Based and Policy-Based RL

Value Based

Learnt Value Function
Implicit policy
(e.g. ε-greedy)

Policy Based

No Value Function
Learnt Policy

Actor-Critic

Learnt Value Function
Learnt Policy

Value Function Policy

Actor
Critic

Value-Based Policy-Based
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Introduction

Advantages of Policy-Based RL

Advantages:

Better convergence properties

Effective in high-dimensional or continuous action spaces

Can learn stochastic policies

Disadvantages:

Typically converge to a local rather than global optimum

Evaluating a policy is typically inefficient and high variance
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Introduction

Rock-Paper-Scissors Example

Example: Rock-Paper-Scissors

Two-player game of rock-paper-scissors

Scissors beats paper
Rock beats scissors
Paper beats rock

Consider policies for iterated rock-paper-scissors

A deterministic policy is easily exploited
A uniform random policy is optimal (i.e. Nash equilibrium)
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Introduction

Aliased Gridworld Example

Example: Aliased Gridworld (1)

The agent cannot differentiate the grey states
Consider features of the following form (for all N, E, S, W)

φ(s, a) = 1(wall to N, a = move E)

Compare value-based RL, using an approximate value function

Qθ(s, a) = f (φ(s, a), θ)

To policy-based RL, using a parametrised policy

πθ(s, a) = g(φ(s, a), θ)
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Introduction

Aliased Gridworld Example

Example: Aliased Gridworld (2)

Under aliasing, an optimal deterministic policy will either

move W in both grey states (shown by red arrows)
move E in both grey states

Either way, it can get stuck and never reach the money

Value-based RL learns a near-deterministic policy

e.g. greedy or ε-greedy

So it will traverse the corridor for a long time
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Introduction

Aliased Gridworld Example

Example: Aliased Gridworld (3)

An optimal stochastic policy will randomly move E or W in
grey states

πθ(wall to N and S, move E) = 0.5

πθ(wall to N and S, move W) = 0.5

It will reach the goal state in a few steps with high probability

Policy-based RL can learn the optimal stochastic policy
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Introduction

Policy Search

Policy Objective Functions

Goal: given policy πθ(s, a) with parameters θ, find best θ

But how do we measure the quality of a policy πθ?

In episodic environments we can use the start value

J1(θ) = V πθ(s1) = Eπθ [v1]

In continuing environments we can use the average value

JavV (θ) =
∑
s

dπθ(s)V πθ(s)

Or the average reward per time-step

JavR(θ) =
∑
s

dπθ(s)
∑
a

πθ(s, a)Ra
s

where dπθ(s) is stationary distribution of Markov chain for πθ
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Introduction

Policy Search

Policy Optimisation

Policy based reinforcement learning is an optimisation problem

Find θ that maximises J(θ)

Some approaches do not use gradient

Hill climbing
Simplex / amoeba / Nelder Mead
Genetic algorithms

Greater efficiency often possible using gradient

Gradient descent
Conjugate gradient
Quasi-newton

We focus on gradient descent, many extensions possible

And on methods that exploit sequential structure
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Finite Difference Policy Gradient

Policy Gradient

Let J(θ) be any policy objective function

Policy gradient algorithms search for a
local maximum in J(θ) by ascending the
gradient of the policy, w.r.t. parameters θ

∆θ = α∇θJ(θ)

Where ∇θJ(θ) is the policy gradient

∇θJ(θ) =


∂J(θ)
∂θ1
...

∂J(θ)
∂θn


and α is a step-size parameter
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Finite Difference Policy Gradient

Computing Gradients By Finite Differences

To evaluate policy gradient of πθ(s, a)

For each dimension k ∈ [1, n]

Estimate kth partial derivative of objective function w.r.t. θ
By perturbing θ by small amount ε in kth dimension

∂J(θ)

∂θk
≈ J(θ + εuk)− J(θ)

ε

where uk is unit vector with 1 in kth component, 0 elsewhere

Uses n evaluations to compute policy gradient in n dimensions

Simple, noisy, inefficient - but sometimes effective

Works for arbitrary policies, even if policy is not differentiable
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Finite Difference Policy Gradient

AIBO example

Training AIBO to Walk by Finite Difference Policy Gradient

those parameters to an Aibo and instructing it to time itself
as it walked between two fixed landmarks (Figure 5). More
efficient parameters resulted in a faster gait, which translated
into a lower time and a better score. After completing an
evaluation, the Aibo sent the resulting score back to the host
computer and prepared itself for a new set of parameters to
evaluate.6

When implementing the algorithm described above, we
chose to evaluate t = 15 policies per iteration. Since there
was significant noise in each evaluation, each set of parameters
was evaluated three times. The resulting score for that set of
parameters was computed by taking the average of the three
evaluations. Each iteration therefore consisted of 45 traversals
between pairs of beacons and lasted roughly 7 1

2 minutes. Since
even small adjustments to a set of parameters could lead to
major differences in gait speed, we chose relatively small
values for each εj . To offset the small values of each εj , we
accelerated the learning process by using a larger value of
η = 2 for the step size.

A

B
C

A’

LandmarksLandmarks

C’

B’

Fig. 5. The training environment for our experiments. Each Aibo times itself
as it moves back and forth between a pair of landmarks (A and A’, B and B’,
or C and C’).

IV. RESULTS

Our main result is that using the algorithm described in
Section III, we were able to find one of the fastest known Aibo
gaits. Figure 6 shows the performance of the best policy of
each iteration during the learning process. After 23 iterations
the learning algorithm produced a gait (shown in Figure 8)
that yielded a velocity of 291 ± 3 mm/s, faster than both the
best hand-tuned gaits and the best previously known learned
gaits (see Figure 1). The parameters for this gait, along with
the initial parameters and ε values are given in Figure 7.

Note that we stopped training after reaching a peak policy at
23 iterations, which amounted to just over 1000 field traversals
in about 3 hours. Subsequent evaluations showed no further
improvement, suggesting that the learning had plateaued.

6There is video of the training process at:
www.cs.utexas.edu/˜AustinVilla/legged/learned-walk/
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Velocity of Learned Gait during Training

(UT Austin Villa)

Learned Gait

Hand!tuned Gait

Hand!tuned Gait

Hand!tuned Gait
(UNSW)

(UNSW)

(German Team)

(UT Austin Villa)
Learned Gait

Fig. 6. The velocity of the best gait from each iteration during training,
compared to previous results. We were able to learn a gait significantly faster
than both hand-coded gaits and previously learned gaits.

Parameter Initial ε Best
Value Value

Front locus:
(height) 4.2 0.35 4.081

(x offset) 2.8 0.35 0.574
(y offset) 4.9 0.35 5.152

Rear locus:
(height) 5.6 0.35 6.02

(x offset) 0.0 0.35 0.217
(y offset) -2.8 0.35 -2.982

Locus length 4.893 0.35 5.285
Locus skew multiplier 0.035 0.175 0.049
Front height 7.7 0.35 7.483
Rear height 11.2 0.35 10.843
Time to move

through locus 0.704 0.016 0.679
Time on ground 0.5 0.05 0.430

Fig. 7. The initial policy, the amount of change (ε) for each parameter, and
best policy learned after 23 iterations. All values are given in centimeters,
except time to move through locus, which is measured in seconds, and time
on ground, which is a fraction.

There are a couple of possible explanations for the amount
of variation in the learning process, visible as the spikes in
the learning curve shown in Figure 6. Despite the fact that we
averaged over multiple evaluations to determine the score for
each policy, there was still a fair amount of noise associated
with the score for each policy. It is entirely possible that
this noise led the search astray at times, causing temporary
decreases in performance. Another explanation for the amount
of variation in the learning process could be the relatively large
step size (η = 2) used to adjust the policy at the end of each
iteration. As mentioned previously, we chose a large step size
to offset the relatively small values of ε. While serving to
accelerate the rate of learning, this large step size might also
have caused the search process to periodically jump into a

Our team (UT Austin Villa [10]) first approached the gait
optimization problem by hand-tuning a gait described by half-
elliptical loci. This gait performed comparably to those of
other teams participating in RoboCup 2003. The work reported
in this paper uses the hand-tuned UT Austin Villa walk as a
starting point for learning. Figure 1 compares the reported
speeds of the gaits mentioned above, both hand-tuned and
learned, including that of our starting point, the UT Austin
Villa walk. The latter walk is described fully in a team
technical report [10]. The remainder of this section describes
the details of the UT Austin Villa walk that are important to
understand for the purposes of this paper.

Hand-tuned gaits Learned gaits
CMU German UT Austin Hornby
(2002) Team Villa UNSW 1999 UNSW
200 230 245 254 170 270

Fig. 1. Maximum forward velocities of the best current gaits (in mm/s) for
different teams, both learned and hand-tuned.

The half-elliptical locus used by our team is shown in
Figure 2. By instructing each foot to move through a locus of
this shape, with each pair of diagonally opposite legs in phase
with each other and perfectly out of phase with the other two
(a gait known as a trot), we enable the Aibo to walk. Four
parameters define this elliptical locus:
1) The length of the ellipse;
2) The height of the ellipse;
3) The position of the ellipse on the x axis; and
4) The position of the ellipse on the y axis.
Since the Aibo is roughly symmetric, the same parameters

can be used to describe loci on both the left and right side
of the body. To ensure a relatively straight gait, the length
of the ellipse is the same for all four loci. Separate values
for the elliptical height, x, and y positions are used for the
front and back legs. An additional parameter which governs
the turning rate of the Aibo is used to determine the skew of
all four ellipses in the x-y plane, a technique introduced by
the UNSW team [11].3 The amount of skew is determined by
the product of the angle at which the Aibo wishes to move
and this skew multiplier parameter.
All told, the following set of 12 parameters define the Aibo’s

gait [10]:
• The front locus (3 parameters: height, x-pos., y-pos.)
• The rear locus (3 parameters)
• Locus length
• Locus skew multiplier in the x-y plane (for turning)
• The height of the front of the body
• The height of the rear of the body
• The time each foot takes to move through its locus
• The fraction of time each foot spends on the ground

3Even when walking directly forward, noise in an Aibo’s motions occa-
sionally requires that the four ellipses be skewed to allow the Aibo to execute
small turns in order to stay on course.

z

x
y

Fig. 2. The elliptical locus of the Aibo’s foot. The half-ellipse is defined by
length, height, and position in the x-y plane.

During the American Open tournament in May of 2003,4
UT Austin Villa used a simplified version of the parameter-
ization described above that did not allow the front and rear
heights of the robot to differ. Hand-tuning these parameters
generated a gait that allowed the Aibo to move at 140 mm/s.
After allowing the front and rear height to differ, the Aibo was
tuned to walk at 245 mm/s in the RoboCup 2003 competition.5
Applying machine learning to this parameter optimization
process, however, allowed us to significantly improve the
speed of the Aibos, as described in the following section.

III. LEARNING THE WALK
Given the parameterization of the walk defined in Section II,

our task amounts to a parameter optimization problem in a
continuous 12-dimensional space. For the purposes of this
paper, we adopt forward speed as the sole objective function.
That is, as long as the robot does not actually fall over, we
do not optimize for any form of stability (for instance in the
face of external forces from other robots).
We formulate the problem as a policy gradient reinforce-

ment learning problem by considering each possible set of
parameter assignments as defining open-loop policy that can
be executed by the robot. Assuming that the policy is differ-
entiable with respect to each of the parameters, we estimate
the policy’s gradient in parameter space, and then follow it
towards a local optimum.
Since we do not know anything about the true functional

form of the policy, we cannot calculate the gradient exactly.
Furthermore, empirically estimating the gradient by sampling
can be computationally expensive if done naively, given the
large size of the search space and the temporal cost of each
evaluation. Given the lack of accurate simulators for the Aibo,
we are forced to perform the learning entirely on real robots,
which makes efficiency a prime concern.
In this section we present an efficient method of estimat-

ing the policy gradient. It can be considered a degenerate

4http://www.cs.cmu.edu/˜AmericanOpen03/
5http://www.openr.org/robocup/. Thanks to Daniel Stronger for

hand-tuning the walks to achieve these speeds.

Goal: learn a fast AIBO walk (useful for Robocup)

AIBO walk policy is controlled by 12 numbers (elliptical loci)

Adapt these parameters by finite difference policy gradient

Evaluate performance of policy by field traversal time
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Finite Difference Policy Gradient

AIBO example

AIBO Walk Policies

Before training

During training

After training
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Monte-Carlo Policy Gradient

Likelihood Ratios

Score Function

We now compute the policy gradient analytically

Assume policy πθ is differentiable whenever it is non-zero

and we know the gradient ∇θπθ(s, a)

Likelihood ratios exploit the following identity

∇θπθ(s, a) = πθ(s, a)
∇θπθ(s, a)

πθ(s, a)

= πθ(s, a)∇θ log πθ(s, a)

The score function is ∇θ log πθ(s, a)
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Monte-Carlo Policy Gradient

Likelihood Ratios

Softmax Policy

We will use a softmax policy as a running example

Weight actions using linear combination of features φ(s, a)>θ

Probability of action is proportional to exponentiated weight

πθ(s, a) ∝ eφ(s,a)>θ

The score function is

∇θ log πθ(s, a) = φ(s, a)− Eπθ [φ(s, ·)]
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Monte-Carlo Policy Gradient

Likelihood Ratios

Gaussian Policy

In continuous action spaces, a Gaussian policy is natural

Mean is a linear combination of state features µ(s) = φ(s)>θ

Variance may be fixed σ2, or can also parametrised

Policy is Gaussian, a ∼ N (µ(s), σ2)

The score function is

∇θ log πθ(s, a) =
(a− µ(s))φ(s)

σ2
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Monte-Carlo Policy Gradient

Policy Gradient Theorem

One-Step MDPs

Consider a simple class of one-step MDPs

Starting in state s ∼ d(s)
Terminating after one time-step with reward r = Rs,a

Use likelihood ratios to compute the policy gradient

J(θ) = Eπθ [r ]

=
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)Rs,a

∇θJ(θ) =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)∇θ log πθ(s, a)Rs,a

= Eπθ [∇θ log πθ(s, a)r ]
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Monte-Carlo Policy Gradient

Policy Gradient Theorem

Policy Gradient Theorem

The policy gradient theorem generalises the likelihood ratio
approach to multi-step MDPs

Replaces instantaneous reward r with long-term value Qπ(s, a)

Policy gradient theorem applies to start state objective,
average reward and average value objective

Theorem

For any differentiable policy πθ(s, a),
for any of the policy objective functions J = J1, JavR , or 1

1−γ JavV ,
the policy gradient is

∇θJ(θ) = Eπθ [∇θ log πθ(s, a) Qπθ(s, a)]
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Monte-Carlo Policy Gradient

Policy Gradient Theorem

Monte-Carlo Policy Gradient (REINFORCE)

Update parameters by stochastic gradient ascent

Using policy gradient theorem

Using return vt as an unbiased sample of Qπθ(st , at)

∆θt = α∇θ log πθ(st , at)vt

function REINFORCE
Initialise θ arbitrarily
for each episode {s1, a1, r2, ..., sT−1, aT−1, rT} ∼ πθ do

for t = 1 to T − 1 do
θ ← θ + α∇θ log πθ(st , at)vt

end for
end for
return θ

end function
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Monte-Carlo Policy Gradient

Policy Gradient Theorem

Puck World Example

POLICY-GRADIENT ESTIMATION
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Figure 10: Plots of the performance of the neural-network puck controller for the four runs (out of
100) that converged to substantially suboptimal local minima.

target

Figure 11: Illustration of the behaviour of a typical trained puck controller.

type , the service provider receives a reward of units. The goal of the service provider is to
maximize the long-term average reward.

The parameters associated with each call type are listed in Table 3. With these settings, the
optimal policy (found by dynamic programming by Marbach (1998)) is to always accept calls of
type 2 and 3 (assuming sufficient available bandwidth) and to accept calls of type 1 if the available
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Figure 9: Performance of the neural-network puck controller as a function of the number of itera-
tions of the puck world, when trained using . Performance estimates were
generated by simulating for iterations. Averaged over 100 independent runs
(excluding the four bad runs in Figure 10).

the target. From Figure 9 we see that the final performance of the puck controller is close to optimal.
In only 4 of the 100 runs did get stuck in a suboptimal local minimum. Three of
those cases were caused by overshooting in (see Figure 10), which could be prevented
by adding extra checks to .

Figure 11 illustrates the behaviour of a typical trained controller. For the purpose of the illus-
tration, only the target location and puck velocity were randomized every 30 seconds, not the puck
location.

5.3 Call Admission Control

In this section we report the results of experiments in which was applied to the task
of training a controller for the call admission problem treated by Marbach (1998, Chapter 7).

5.3.1 THE PROBLEM

The call admission control problem treated by Marbach (1998, Chapter 7) models the situation
in which a telecommunications provider wishes to sell bandwidth on a communications link to
customers in such a way as to maximize long-term average reward.

Specifically, the problem is a queuing problem. There are three different types of call, each
with its own call arrival rate , , , bandwidth demand , , and average
holding time , , . The arrivals are Poisson distributed while the holding times are
exponentially distributed. The link has a maximum bandwidth of 10 units. When a call arrives and
there is sufficient available bandwidth, the service provider can choose to accept or reject the call
(if there is not enough available bandwidth the call is always rejected). Upon accepting a call of

370

Continuous actions exert small force on puck

Puck is rewarded for getting close to target

Target location is reset every 30 seconds

Policy is trained using variant of Monte-Carlo policy gradient
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Actor-Critic Policy Gradient

Reducing Variance Using a Critic

Monte-Carlo policy gradient still has high variance

We use a critic to estimate the action-value function,

Qw (s, a) ≈ Qπθ(s, a)

Actor-critic algorithms maintain two sets of parameters

Critic Updates action-value function parameters w
Actor Updates policy parameters θ, in direction

suggested by critic

Actor-critic algorithms follow an approximate policy gradient

∇θJ(θ) ≈ Eπθ [∇θ log πθ(s, a) Qw (s, a)]

∆θ = α∇θ log πθ(s, a) Qw (s, a)
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Actor-Critic Policy Gradient

Estimating the Action-Value Function

The critic is solving a familiar problem: policy evaluation

How good is policy πθ for current parameters θ?

This problem was explored in previous two lectures, e.g.

Monte-Carlo policy evaluation
Temporal-Difference learning
TD(λ)

Could also use e.g. least-squares policy evaluation
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Actor-Critic Policy Gradient

Action-Value Actor-Critic

Simple actor-critic algorithm based on action-value critic

Using linear value fn approx. Qw (s, a) = φ(s, a)>w

Critic Updates w by linear TD(0)
Actor Updates θ by policy gradient

function QAC
Initialise s, θ
Sample a ∼ πθ
for each step do

Sample reward r = Ra
s ; sample transition s ′ ∼ Pa

s,·
Sample action a′ ∼ πθ(s ′, a′)
δ = r + γQw (s ′, a′)− Qw (s, a)
θ = θ + α∇θ log πθ(s, a)Qw (s, a)
w ← w + βδφ(s, a)
a← a′, s ← s ′

end for
end function
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Actor-Critic Policy Gradient

Compatible Function Approximation

Bias in Actor-Critic Algorithms

Approximating the policy gradient introduces bias

A biased policy gradient may not find the right solution

e.g. if Qw (s, a) uses aliased features, can we solve gridworld
example?

Luckily, if we choose value function approximation carefully

Then we can avoid introducing any bias

i.e. We can still follow the exact policy gradient
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Actor-Critic Policy Gradient

Compatible Function Approximation

Compatible Function Approximation

Theorem (Compatible Function Approximation Theorem)

If the following two conditions are satisfied:

1 Value function approximator is compatible to the policy

∇wQw (s, a) = ∇θ log πθ(s, a)

2 Value function parameters w minimise the mean-squared error

ε = Eπθ
[
(Qπθ(s, a)− Qw (s, a))2

]
Then the policy gradient is exact,

∇θJ(θ) = Eπθ [∇θ log πθ(s, a) Qw (s, a)]
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Actor-Critic Policy Gradient

Compatible Function Approximation

Proof of Compatible Function Approximation Theorem

If w is chosen to minimise mean-squared error, gradient of ε w.r.t.
w must be zero,

∇wε = 0

Eπθ

[
(Qθ(s, a)− Qw (s, a))∇wQw (s, a)

]
= 0

Eπθ

[
(Qθ(s, a)− Qw (s, a))∇θ log πθ(s, a)

]
= 0

Eπθ

[
Qθ(s, a)∇θ log πθ(s, a)

]
= Eπθ

[Qw (s, a)∇θ log πθ(s, a)]

So Qw (s, a) can be substituted directly into the policy gradient,

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qw (s, a)]
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Actor-Critic Policy Gradient

Advantage Function Critic

Reducing Variance Using a Baseline

We subtract a baseline function B(s) from the policy gradient
This can reduce variance, without changing expectation

Eπθ [∇θ log πθ(s, a)B(s)] =
∑
s∈S

dπθ(s)
∑
a

∇θπθ(s, a)B(s)

=
∑
s∈S

dπθB(s)∇θ
∑
a∈A

πθ(s, a)

= 0

A good baseline is the state value function B(s) = V πθ(s)
So we can rewrite the policy gradient using the advantage
function Aπθ(s, a)

Aπθ(s, a) = Qπθ(s, a)− V πθ(s)

∇θJ(θ) = Eπθ [∇θ log πθ(s, a) Aπθ(s, a)]
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Actor-Critic Policy Gradient

Advantage Function Critic

Estimating the Advantage Function (1)

The advantage function can significantly reduce variance of
policy gradient

So the critic should really estimate the advantage function

For example, by estimating both V πθ(s) and Qπθ(s, a)

Using two function approximators and two parameter vectors,

Vv (s) ≈ V πθ(s)

Qw (s, a) ≈ Qπθ(s, a)

A(s, a) = Qw (s, a)− Vv (s)

And updating both value functions by e.g. TD learning
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Actor-Critic Policy Gradient

Advantage Function Critic

Estimating the Advantage Function (2)

For the true value function V πθ(s), the TD error δπθ

δπθ = r + γV πθ(s ′)− V πθ(s)

is an unbiased estimate of the advantage function

Eπθ [δπθ |s, a] = Eπθ
[
r + γV πθ(s ′)|s, a

]
− V πθ(s)

= Qπθ(s, a)− V πθ(s)

= Aπθ(s, a)

So we can use the TD error to compute the policy gradient

∇θJ(θ) = Eπθ [∇θ log πθ(s, a) δπθ ]

In practice we can use an approximate TD error

δv = r + γVv (s ′)− Vv (s)

This approach only requires one set of critic parameters v
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Actor-Critic Policy Gradient

Eligibility Traces

Critics at Different Time-Scales

Critic can estimate value function Vθ(s) from many targets at
different time-scales From last lecture...

For MC, the target is the return vt

∆θ = α(vt − Vθ(s))φ(s)

For TD(0), the target is the TD target r + γV (s ′)

∆θ = α(r + γV (s ′)− Vθ(s))φ(s)

For forward-view TD(λ), the target is the λ-return vλt

∆θ = α(vλt − Vθ(s))φ(s)

For backward-view TD(λ), we use eligibility traces

δt = rt+1 + γV (st+1)− V (st)

et = γλet−1 + φ(st)

∆θ = αδtet
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Actors at Different Time-Scales

The policy gradient can also be estimated at many time-scales

∇θJ(θ) = Eπθ [∇θ log πθ(s, a) Aπθ(s, a)]

Monte-Carlo policy gradient uses error from complete return

∆θ = α(vt − Vv (st))∇θ log πθ(st , at)

Actor-critic policy gradient uses the one-step TD error

∆θ = α(r + γVv (st+1)− Vv (st))∇θ log πθ(st , at)
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Policy Gradient with Eligibility Traces

Just like forward-view TD(λ), we can mix over time-scales

∆θ = α(vλt − Vv (st))∇θ log πθ(st , at)

where vλt − Vv (st) is a biased estimate of advantage fn

Like backward-view TD(λ), we can also use eligibility traces

By equivalence with TD(λ), substituting φ(s) = ∇θ log πθ(s, a)

δ = rt+1 + γVv (st+1)− Vv (st)

et+1 = λet +∇θ log πθ(s, a)

∆θ = αδet

This update can be applied online, to incomplete sequences
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Alternative Policy Gradient Directions

Gradient ascent algorithms can follow any ascent direction

A good ascent direction can significantly speed convergence

Also, a policy can often be reparametrised without changing
action probabilities

For example, increasing score of all actions in a softmax policy

The vanilla gradient is sensitive to these reparametrisations
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Natural Policy Gradient

The natural policy gradient is parametrisation independent

It finds ascent direction that is closest to vanilla gradient,
when changing policy by a small, fixed amount

∇nat
θ πθ(s, a) = G−1

θ ∇θπθ(s, a)

where Gθ is the Fisher information matrix

Gθ = Eπθ
[
∇θ log πθ(s, a)∇θ log πθ(s, a)T

]
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Natural Actor-Critic

Using compatible function approximation,

∇wAw (s, a) = ∇θ log πθ(s, a)

So the natural policy gradient simplifies,

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Aπθ(s, a)]

= Eπθ
[
∇θ log πθ(s, a)∇θ log πθ(s, a)Tw

]
= Gθw

∇nat
θ J(θ)= w

i.e. update actor parameters in direction of critic parameters
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Natural Actor Critic in Snake Domain

The dynamics of the CPG is given by

Λ(t + 1) = Λ(t) + ω(t), (27)

where ω is the input (corresponding to an angular velocity) to the CPG, either of a constant
input (ω0) or an impulsive input (ω0 + ∆ω), where ∆ω is fixed at π/15. The snake-like
robot controlled by this CPG goes straight during ω is ω0, but turns when an impulsive
input is added at a certain instance; the turning angle depends on both the CPG’s internal
state Λ and the intensity of the impulse. An action is to select an input out of these two
candidates, and the controller represents the action selection probability which is adjusted
by RL.

To carry out RL with the CPG, we employ the CPG-actor-critic model [24], in which
the physical system (robot) and the CPG are regarded as a single dynamical system, called
the CPG-coupled system, and the control signal for the CPG-coupled system is optimized
by RL.

(a) Crank course (b) Sensor setting

Figure 2: Crank course and sensor setting

4.1 Experimental settings

We here describe the settings for experiments which examine the efficiency of sample reusage
and the exploration ability of our new RL method, off-NAC.

It is assumed the sensor detects the distance d between the sensor point (red circle in
Fig.2(b)) and the nearest wall, and the angle ν between the proceeding direction and the
nearest wall, as depicted in Fig.2(b). The sensor point is the projection of the head link’s
position onto the body axis which passes through the center of mass and is in the proceeding
direction, of the snake-like robot. The angular sensor perceives the wall as to be within
[0, 2π) [rad] in anti-clockwise manner, and ν = 0 indicates that the snake-like robot hits the
wall.
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Natural Actor Critic in Snake Domain (2)θb
i , the robot soon hit the wall and got stuck (Fig. 3(a)). In contrast, the policy parameter

after learning, θa
i , allowed the robot to pass through the crank course repeatedly (Fig. 3(b)).

This result shows a good controller was acquired by our off-NAC.
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(b) After learning

Figure 3: Behaviors of snake-like robot

Figure 4 shows the action a (accompanied by the number of aggregated impulses), the
internal state of the CPG, cos(Λ), the relative angle of the wall ν̄ (for visibility, the range
ν ∈ [π, 2π) was moved to ν̄ ∈ [−π, 0). If ν̄ is negative (positive), the wall is on the right-
hand-side (left-hand-side) of the robot), and the distance between the robot and the wall,
d. When the wall was on the right-hand-side, the impulsive input was applied (a = 1) when
cos(Λ) was large; this control was appropriate for walking the robot turn left. In addition,
the impulsive input was added many times especially when the distance d became small.

We compare the performance of our off-NAC with that of the on-NAC [1] [2]. We pre-
pared ten initial policy parameters randomly drawn from [−10, 0]4, and they were adjusted
by the two RL methods. Learning parameters, such as the learning coefficient, were best
tuned by hand. To examine solely the efficiency of the reusage of past trajectories here,
we did not use any exploratory behavior policies (σ = 0), i.e., trajectories were generated
according to the current policy in each episode. The maximum number of stored sample
sequences (K) was set at 10, and the number of initially-stored sample sequences (K0) was
set at 0. Eligibility λ was set at 0.999. We regarded a learning run as successful when the
actor was improved such to allow the robot to pass through the crank course twice without
any collision with the wall, after 500 learning episodes.

Table 1 shows the number of successful learning runs and the average number of episodes
until the robot was first successful in passing through the crank course. With respect to
both of the criteria, our off-NAC overwhelmed the on-NAC.

Figure 5 shows a typical learning run by the off-NAC (Fig. 5(1a-c)) and the best run
by the on-NAC (Fig. 5(2a-c)). Panels (a), (b) and (c) show the average reward in a single
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Natural Actor Critic in Snake Domain (3)
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Figure 4: Control after learning

Table 1: The performance comparison of off-NAC and on-NAC

Number of successful learning runs Average length of episodes
off-NAC 10/10 20.6
on-NAC 7/10 145.7

episode, the policy parameter, and the number of episodes elapsed from the last time when
the robot had hit the wall, respectively. A circle point indicates that the robot passed
through the crank. The policy parameter converged when trained by the off-NAC, while
did not converge even in the best run by the on-NAC. Because the policy gradient was
estimated by focusing on a trajectory produced by the current policy in the on-NAC, the
parameter became unstable and would be degraded after a single unlucky failure episode.
A small learning coefficient is able to enhance the stability in the on-NAC, but the learning
will be further slow.

To examine the exploration ability of our off-NAC, we compared an off-NAC0 algorithm
whose σ was fixed at σ0 = 0 and an off-NAC2 algorithm in which the initial value of σ was
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Summary of Policy Gradient Algorithms

The policy gradient has many equivalent forms

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a) vt ] REINFORCE

= Eπθ
[∇θ log πθ(s, a) Qw (s, a)] Q Actor-Critic

= Eπθ
[∇θ log πθ(s, a) Aw (s, a)] Advantage Actor-Critic

= Eπθ
[∇θ log πθ(s, a) δ] TD Actor-Critic

= Eπθ
[∇θ log πθ(s, a) δe] TD(λ) Actor-Critic

G−1
θ ∇θJ(θ) = w Natural Actor-Critic

Each leads a stochastic gradient ascent algorithm

Critic uses policy evaluation (e.g. MC or TD learning)
to estimate Qπ(s, a), Aπ(s, a) or V π(s)


